PonSp’éc;:)é

ECHNOLOGIES

PolySpace™ for C
Documentation

11111



How to Contact The MathWorks

www.mathworks.com

comp.soft-sys.matlab
www.mathworks.com/contact TS.html

suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Web

Newsgroup
Technical Support

Product enhancement suggestions
Bug reports
Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

For contact information about worldwide offices, see the MathWorks Web site.

Release 2007a+
Revision 4.2 vA

2/546


http://www.mathworks.com/
http://www.mathworks.com/contact_TS.html
mailto:suggest@mathworks.com
mailto:bugs@mathworks.com
mailto:doc@mathworks.com
mailto:service@mathworks.com
mailto:info@mathworks.com

TABLE OF CONTENTS

1. PolySpace documentation set

2. Getting started

2.1. General Requirements
2.1.1. Configuration
2.1.2. Installation Guide
2.1.3. Structure of this document

2.2. Step 1: PolySpace Client - Setting up and launching an analysis of a single C file
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.3. PolySpace Client: running the analysis
2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
2.2.3.2. Progression of the analysis
2.2.3.3. End of the analysis

2.3. Step 2: PolySpace Viewer - Exploration of results

2.3.1. Modes of operation

2.3.2. Downlaod results into the Viewer

2.3.3. Analysing of PolySpace results (“example.c”)
2.3.3.1. Procedural entities view (RTE View)
2.3.3.2. Colours in the Source code view
2.3.3.3. More examples of run-time errors
2.3.3.4. Advanced results exploration
2.3.3.5. Miscellaneous

2.3.4. Methodological asssitant
2.3.4.1. Assistant dashboard
2.3.4.2. Choose a methodological assistant

2.3.5. Report Generation

2.4. Step 3: Setting up and launching the MISRA-C checker
2.4.1. Prerequisites
2.4.2. Selecting MISRA-C rules to check
2.4.2.1. File configuration
2.4.2.2. Discard header files from MISRA Checking
2.4.3. Running the MISRA checker

2.5. Launch PolySpace Remotely
2.5.1. Steps of Launching

2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler
2.5.3. Batch commands
2.5.4. Share analyses between accounts

2.6. Summary

3. Analysis setup

3.1. Compile errors
3.1.1. Messages

Release 2007a+ 3/546
Revision 4.2 vA



3.1.1.1. Syntax error

3.1.1.2. Undeclared identifier

3.1.1.3. No such file or directory

3.1.1.4. Compilation errors with key words: @interrupt, @address(0OxABCDEF)
3.1.2. Compiling Operating System dependant code (OS-target issues)

3.1.2.1. List of already predefined compilation flags

3.1.2.2. My target application runs on a Linux OS

3.1.2.3. My target application runs on Solaris

3.1.2.4. My target application runs on Vxworks

3.1.2.5. My target application runs neither on Linux, vxworks nor Solaris
3.1.3. Target specific issues

3.1.3.1. Target specification (size of char, int, float, double...)

3.1.3.2. Generic/custom target

3.1.3.3. Address alighment

3.1.3.4."KEIL” and “IAR” dialects

3.1.3.5. Keywords to automatically ignore or replace, before compilation
3.1.4. Assembly Code

3.1.4.1. All statements are ignored: the rest of the function remains unchanged

3.1.4.2. Following example is automatically stubbed

3.1.4.3. All following examples have an empty body

3.1.4.4. #asm and #endasm support

3.1.4.5. What to do if —discard-asm failes parsing an asm code section
3.1.5. Dealing with backward "goto" statements

3.2. Link messages
3.2.1. Function: wrong argument type
3.2.2. Function: wrong argument number
3.2.3. Variable: wrong type
3.2.4. Variable: signed/unsigned
3.2.5. Variable: different qualifier
3.2.6. Variable: array against variable
3.2.7. Variable: wrong array size
3.2.8. Missing required prototype for varargs
3.2.9. Can an application without “main” be analysed? (For non Client mode only)

3.3. Stubbing errors

3.3.1. Errors when compiling __polyspace stdstubs.c
3.3.1.1. Standard error messages
3.3.1.2. Troubleshooting

3.3.2. Errors when creating automatic stubs

3.3.3. How to gather compilations options efficiently

3.3.4. Stubbing
3.3.4.1. Manual vs. Automatic Stubbing
3.3.4.2. The stubbing options PURE and WORST
3.3.4.3. The default and alternative behaviour for stubbing
3.3.4.4. Function pointer cases
3.3.4.5. Stubbing functions with a variable argument number
3.3.4.6. Finding bugs in __polyspace stdstubs.c

3.4. Intermediate language errors

3.5. Advanced setup
3.5.1. Variables — Declaration and definition
3.5.2. Types promotion
3.5.2.1. An example of an unsigned promoted to sighed
3.5.2.2. What are the promotions rules in operators?

Release 2007a+ 4/546
Revision 4.2 vA



3.5.2.3. Example

3.5.3. Code preparation

3.5.4.

3.5.3.1. Variables

3.5.3.1.1. How can | assign rangesto variables/assert?

3.5.3.1.2. Checking properties on global variables at any point: Global assert
3.5.3.1.3. How can | model variable values external to my application?
3.5.3.1.4. How are variables initialised?

3.5.3.2. Built-in functions

My code is multitasking

3.5.4.1. Modelling tasks,interruptions and events

3.5.4.1.1. Modelling synchronous tasks

3.5.4.1.2. | nterruptions and asynchronous events/tasks/threads
3.5.4.1.3. Areinterruptions maskable or preemptive by default?
3.5.4.2. Shared variables

3.5.4.2.1. Differences between dictionary and concurrent access graph
3.5.4.2.2. Critical sections

3.5.4.2.3. Mutual exclusion

3.5.4.2.4. Access pattern

3.5.4.2.5. Semaphores

3.5.4.3. Miscellaneous

3.5.4.3.1. Mailboxes
3.5.4.3.2. Atomicity (Can an instruction be interrupted by another?)
3.5.4.3.3. Priorities

4. PolySpace day to day usage

4.1. Pol

ySpace In One Click Usage

4.2. Pol

ySpace in a Right Click

5. MISRA Checker

5.1. Rul

es supported

5.1.1.

Language extensions

5.1.2. Character sets

5.1.3.

Identifiers

5.1.4. Types
5.1.5. Constants

5.1.6.

Declarations and definitions

5.1.7.

Initialisation

5.1.8. Arithmetic type conversion

5.1.9.

Pointer type conversion

5.1.10.

Expressions

5.1.11.

Control statement expressions

5.1.12.

Control flow

5.1.13.

Switch statements

5.1.14.

Functions

5.1.15.

Pointers and arrays

5.1.16.

Structures and unions

5.1.17.

Preprocessing directives

5.1.18.

Standard libraries

5.1.19.

Run-time failures

5.2. Rul

es partially supported

Release 2007a+
Revision 4.2 vA

5/546



5.3. Rules not checked

6. Data Range Specifications

6.1. File format

6.2. Variable scope

6.3. Reduce oranges with DRS
6.3.1. Perform efficient module testing
6.3.2. Reduce oranges with the -data-range-specification option

7. PolySpace Model Link

7.1. Getting started
7.1.1. Create a Simulink model and generate production code
7.1.2. Start the PolySpace analysis
7.1.3. Fix an error in the design and the Simulink model
7.1.4. Base workspace vs. PolySpace data ranges
7.1.4.1. Update range of signals
7.1.4.2. Re-Generate code and launch again the PolySpace analysis

7.2. Advance setup
7.2.1. Hand written code
7.2.2. Target production environnement
7.2.3. Template of PolySpace configuration file
7.2.4. Using the PolySpace boxes available in the Simulink library

7.3. PolySpace Utilities
7.3.1. Open PolySpace Results
7.3.2. PolySpace Menu
7.3.3. PolySpace Configuration
7.3.4. Archives files produced for the PolySpace analysis
7.3.5. PolySpace commands available in batch mode as m-functions

7.4. Code Generator Specific Information
7.4.1. PolySpace Model Link for TL
7.4.2. PolySpace Model Link for SL

8. Results review

8.1. Basics: prerequisite being able to review PolySpace results

8.1.1. Grey follows red

8.1.2. What is the message and what does it mean?

8.1.3. What is the C explanation?

8.1.4. Specific check analysis
8.1.4.1. PolySpace memorizes the relationships between variables
8.1.4.2. The purpose of the -continue-with-red-error option.
8.1.4.3. Default settings, —continue-with-red-error and side effects
8.1.4.4. Why there might be 2 distinct colours in a while/for statement.

8.2. Coloured source code for C
8.2.1. lllegal pointer access to variable or structure field: IDP
8.2.2. Array conversion must not extend range: COR

Release 2007a+ 6/546
Revision 4.2 vA



8.2.3. Array index within bounds: OBAI

8.2.4. Initialized Return Value: IRV

8.2.5. Non-Initialized Variable: NIV/NIVL

8.2.6. Non-Initialized Pointer: NIP

8.2.7. Power arithmetic: POW

8.2.8. User Assertion: ASRT

8.2.9. Scalar and Float Underflows: UNFL

8.2.10. Scalar and Float Overflows: OVFL

8.2.11. Float underflows and overflows : UOVFL

8.2.11.1. How much is the biggest float in C?
8.2.11.2. What is the type of constants/What is a constant overflow?
8.2.11.3. Float underflow versus values near zero: UNFL
8.2.12. Scalar or Float Division by zero: ZDV
8.2.13. Shift amount in 0..31 (0..63): SHF
8.2.14. Left operand of left shift is negative: SHF
8.2.15. Function pointer must point to a valid function: COR
8.2.16. Wrong type for argument: COR
8.2.17. Wrong number of arguments: COR
8.2.18. Wrong return type of a function pointer: COR
8.2.19. Wrong return type for arithmetic functions: COR
8.2.20. Pointer within bounds: IDP
8.2.20.1. Understanding addressing
8.2.20.1.1. | systematically have an orange out of bounds access on my hardware register

8.2.20.1.2. The NULL pointer case
8.2.20.1.3. Comparing address
8.2.20.2. Understanding pointers
8.2.20.2.1. Address alignment: the bitfield example
8.2.20.2.2. How does malloc work for PolySpace?
8.2.20.2.3. Structure Handling
8.2.20.2.3.1. Data mapping into a structure
8.2.20.2.3.2. Mapping of a small structureinto a bigger one
8.2.20.2.3.3. Partially allocated pointer (-size-in-bytes)
8.2.20.2.3.4. Pointer to a structurefield
8.2.20.2.3.5. | haveared when reading a field of one structure
8.2.21. Non Termination of Call or Loop
8.2.21.1. Non Termination of Call: NTC
8.2.21.2. Known Non Termination of Call: k-NTC
8.2.21.3. Non Termination of Loop: NTL
8.2.21.4. Arithmetic expressions: NTC
8.2.22. Unreachable Code: UNR
8.2.23. Value On Assignment: VOA
8.2.24. Inspection Points: IPT

9. PolySpace Methodological guide

9.1. PolySpace usage

9.1.1. Standard development process

9.1.2. Rigorous development process: introducing tools and coding rules
9.1.3. A quality/qualification approach

9.1.4. Code acceptance criterion

9.2. PolySpace activities

Release 2007a+
Revision 4.2 vA

9.2.1. Review run time errors: Fix red errors
9.2.2. Review dead code checks: why is grey code interesting?
9.2.2.1. Functional bugs can be found in grey code

7/546



9.2.2.2. Structural coverage
9.2.3. How to find a maximum number of bugs within an hour reviewing oranges: selective orange review
9.2.3.1. How?
9.2.3.2. Why?
9.2.3.3. In practice...
9.2.3.4. Step by step
9.2.3.5. Which category of checks should I choose first?
9.2.3.6. Exhaustive orange review at unit phase
9.2.3.6.1. Without coding rules
9.2.3.6.2. With coding rules
9.2.4. Cost and benefits of an exhaustive orange review at integration phase
9.2.4.1. Benefits
9.2.4.2. Costs
9.2.4.3. Method
9.2.4.3.1. Inconclusive
9.2.4.3.2. Basic imprecision
9.2.4.3.3. Real bugs and data sets
9.2.5. Integration bug tracking
9.2.6. How to find bugs in unprotected shared data
9.2.7. Dataflow analysis
9.2.8. Data and coding rules

9.3. How to get the best results
9.3.1. Reduce oranges step by step
9.3.2. Generic objectives: a balance between precision and analysis time
9.3.3. Options at launching time
9.3.3.1. Vary the precision level
9.3.3.2. Apply Software safety level wisely
9.3.3.3. Add precision constraints at the application periphery via stubs
9.3.3.3.1. Reduce the cloud of points
9.3.3.3.2. Increase the number of red and green checks
9.3.3.4. Describe multitasking behaviour properly
9.3.3.5. Tune the advanced parameters
9.3.4. How to conclude an orange review
9.3.4.1. What is an orange?
9.3.4.2. What are the different sources of oranges?
9.3.4.3. How to determine the cause of one orange?
9.3.5. Duration of Analysis
9.3.5.1. How far has the analysis gone? How can | predict the analysis duration
9.3.5.2. Reducing analysis time
9.3.5.2.1. An ideal application size
9.3.5.2.2. Why should there be an optimum size?
9.3.5.2.3. Switch the anti-virus off
9.3.5.2.4. Tuning PolySpace parameters
9.3.5.2.5. By selecting a subset of code
9.3.5.2.5.1. Subdivision in accordance with dataflow
9.3.5.2.5.2. Subdivide according to real-time characteristics
9.3.5.2.5.3. Subdivide according to files
9.3.5.2.6. A decision algorithm to speed up an analysis: Hints and trouble-shooting
9.3.5.2.7. What are the benefits of these methods?
9.3.5.2.7.1. When the application isincomplete
9.3.5.2.7.2. Considering the effects of application code size

9.4. Applying coding rules to reduce oranges
9.4.1. MISRA rules which PolySpace can help to follow
9.4.2. Recommended set of coding rules

Release 2007a+ 8/546
Revision 4.2 vA



9.4.2.1. Set of coding rules having a direct impact on the selectivity
9.4.2.2. Set of coding rules having an indirect impact on the selectivity

9.4.3. Approximations made by PolySpace
9.4.3.1. Volatile variables
9.4.3.2. Structures with volatile fields
9.4.3.3. Absolute addresses
9.4.3.4. Pointer comparison
9.4.3.5. Left shift on negative variables
9.4.3.6. Some bitwise operators
9.4.3.7. Float loops
9.4.3.8. Shared variables
9.4.3.9. Array of function pointers
9.4.3.10. Trigonometric functions
9.4.3.11. Unions
9.4.3.12. Loop exit conditions
9.4.3.13. Constant pointer

10. Options description

10.1. General
10.1.1. -prog Session identifier
10.1.2. -date Date
10.1.3. -author Author
10.1.4. -verif-version Version
10.1.5. -voa
10.1.6. -keep-all-files
10.1.7. -continue-with-red-error
10.1.8. -continue-with-existing-host
10.1.9. -allow-unsupported-linux
10.1.10. -results-dir Results Directory
10.1.11. -sources "files" or -sources-list-file file_name
10.1.12. -l directory

10.2. Target/Compiler
10.2.1. -target TargetProcessorType
10.2.2. GENERIC ADVANCED TARGET OPTIONS
10.2.2.1. -default-sign-of-char [sighed|unsigned]
10.2.2.2. -char-is-16bits
10.2.2.3. -short-is-8bits
10.2.2.4. -int-is-32bits
10.2.2.5. -long-long-is-64bits
10.2.2.6. -double-is-64bits
10.2.2.7. -pointer-is-32bits
10.2.2.8. -align [8]16]|32]
10.2.2.9. -logical-signed-right-shift
10.2.3. -OS-target OperatingSystemTargetForPolySpaceStubs
10.2.4. -D compiler-flag
10.2.5. -U compiler-flag
10.2.6. -include file_name
10.2.7. -post-preprocessing-command <file_name> or "command"
10.2.8. -post-analysis-command <file name> or "command"

10.3. Compliance with standards
10.3.1. -dos
10.3.2. Embedded Assembler

Release 2007a+
Revision 4.2 vA

9/546



10.3.2.1.

-discard-asm

10.3.2.2.

Pragmas asm

10.3.3. Strictness during analysis launching

10.3.3.1.

-strict

10.3.3.2.

-Wall

10.3.4. Permissiveness during analysis launching

10.3.4.1.

-permissive

10.3.4.2.

-permissive-link

10.3.4.3.

-allow-non-int-bitfield

10.3.4.4.

-allow-undef-variables

10.3.4.5.

-ignore-constant-overflows

10.3.4.6.

-allow-unnamed-fields

10.3.4.7.

-allow-negative-operand-in-shift

10.3.5. MISRA-C 2004 Rules

10.3.5.1.

-misra2 [all-rules | file_name]

10.3.5.2.

-includes-to-ignore "dir_or_file pathl[,dir_or_file path2][,...]]"

10.3.6. -dialect [iar|keil]

10.4. PolySpace inner settings

10.4.1. MAIN GENERATOR OPTIONS (-main-generator) for PolySpace

10.4.1.1. PolySpace Client default behaviour

10.4.1.2. PolySpace Server default behaviour

10.4.1.3. -main-generator (detailed options)

10.4.1.4. -main-generator-writes-variables [ none | public | all | custom=v1,v2,.]
10.4.1.5. -function-called-before-main function_name

10.4.1.6. -main-generator-calls [ none | unused | all | custom=f1,2,...]

10.4.2. Stubbing

10.4.2.1.

-data-range-specifications file_ name

10.4.2.2.

-permissive-stubber

10.4.2.3.

-no-automatic-stubbing

10.4.3. Assumptions

10.4.3.1. -div-round-down

10.4.3.2. -no-def-init-glob

10.4.3.3. -size-in-bytes

10.4.3.4. -allow-ptr-arith-on-struct

10.4.3.5. -ignore-float-rounding

10.4.3.6. -detect-unsigned-overflows

10.4.3.7. -known-NTC procl[,proc?2],...]]
10.4.4. Others

10.4.4.1. -extra-flags option-extra-flag

10.4.4.2. -c-extra-flags flag

10.5. Precision/Scaling

Release 2007a+
Revision 4.2 vA

10.5.1. -quick

10.5.2. -O(0-3)

10.5.3. -modules-precision mod1:0(0-3)[,mod2:0(0-3)[,...]]

10.5.4. -from verification-phase

10.5.5. -to verification-phase

10.5.6. -context-sensitivity "procl[,proc2[,...]]"

10.5.7. -context-sensitivity-auto

10.5.8. -path-sensitivity-delta number

10.5.9. -retype-

pointer

10.5.10. -retype-int-pointer

10.5.11. -k-limiting number

10.5.12. -no-fold

10.5.13. -respect-types-in-globals

©10/546



10.5.14. -respect-types-in-fields
10.5.15. -inline "procl|,proc?2[,...1]"
10.5.16. -lightweight-thread-model

10.6. Multitasking (For PolySpace Server only)
10.6.1. -entry-points stri[,str2[,...]]
10.6.2. Critical sections
10.6.3. -temporal-exclusions-file file_name

10.7. Batch mode options
10.7.1. -server server_name_or_ip[:port_number]
10.7.2. -sources-list-file file_name
10.7.3. -v | -version

10.7.4. -hlelp]

10.8. Complete examples

11. Appendix

11.1. Glossary

11.2. What is static verification?

Release 2007a+ 11/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Back to table of contents Next

1. PolySpace documentation set

This document represents all the documentation required to use PolySpace tools, irrespective of
whether you are a beginner or an experienced user. It covers both PolySpace Client and PolySpace
Server.

Are you looking to analyse

. One file?
o Do you want to perform your first analysis and results review?
s Do you want to launch an analysis with a right click?
o Are you applying coding rules?
« Reduce the number of orange checks - step by step
« Apply chosen coding rules

o Is it possible for you to restrict data (functional) ranges in the file?
« Using the Data Range Specification feature (DRS)

« By replacing automatic stubs of functions manually
o Do you have issues with setting up or launching an analysis?

o When reviewing results, is your main concern
« Productivity? Do you wish to focus on productivity by finding bugs quickly?

« Reliability? Do you want to examine every result PolySpace provides?
« Or do you want to find a compromise between productivity and reliability?

o Does your analysis take place:
= On the developer's Client tool?

« Spooled on a distant server, using the PolySpace Remote Launcher queuing
mechanism?

. Analyses code generated from models using PolySpace Model Link?

. Multiple files?

o Do you have issues related to:
« Analysis launching (setup)?
» Common setup issues

» Advanced setup

» Multitasking issues?
» Shared variables?

s Do you want to find bugs efficiently in the results?

s Does your analysis takes place on a server, and do you want access the queued

analysis?
Detailed contents
. PolySpace Installation. Please refer to Pol ySpace_i nstal | ati on_gui de. pdf and

Release 2007a+ 12/546
Revision 4.2 vA



Pol ySpace | icense_Installation_gui de. pdf located on the CD-ROM (in <CD- ROW>
\ Docs\Install).

. "Getting Started" explains how to get started with PolySpace. It explains the principles of the
tool, describes the installation procedure, and explains how to use the product with reference to
some simple scenarios.

. "Setting up an analysis" details all features of PolySpace which are relevant when preparing to
analyse your code. It is a comprehensive reference manual for the launching of analyses. It
contains all information related to the launching of an analysis, error messages at different
phases of an analysis, and means at setup-time to reduce ill founded warnings (oranges).
 PolySpace in One Click allows configuring a project and launches analysis using PolySpace
“Tool Bar ” and right click in the “Send To” menu (Only on Windows).

“MISRA checker” details all the MISRA C-2004 rules that help developers achieves MISRA
compliance.

 The “PolySpace Data Range Specifications” (DRS) is an easy to use module that helps
developers achieves external constraints on global variables without intrusion.

. "Reviewing results" details all features of PolySpace which are relevant when reviewing your
results. It is a comprehensive reference document, giving typical examples for each error
category, offering advice on getting started with your first results, advising which colours to look
at, and explaining how to find bugs efficiently.

. "PolySpace and your development process"” gives guidance in the use of PolySpace as an
integral part of the development process. It is presented as a narrative, and will help proficient
users of the tool to get the best possible use from it. It presents different development
processes, and shows how PolySpace might best be integrated in each case.

. "Advanced setup" includes multitasking information for PolySpace Verifier, hints and tips for
quicker PolySpace Verifier analyses, and a complete description of those features which are
used in order to launch a PolySpace analysis.

Release 2007a+ 13/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2. Getting started

Related subjects:
2.1. General Requirements

2.2. Step 1. PolySpace Client - Setting up and launching an analysis of a single C file
2.3. Step 2: PolySpace Viewer - Exploration of results

2.4. Step 3: Setting up and launching the M1 SRA-C checker

2.5. Launch PolySpace Remotely

2.6. Summary

Release 2007a+ 14/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.1. General Requirements

Related subjects:
2.1.1. Configuration

2.1.2. Installation Guide
2.1.3. Structur e of this document

Release 2007a+ 15/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.1.1. Configuration

Please refer to PolySpace installation manual for the minimum hardware requirements to follow step by
step this tutorial about a PolySpace Client on a Windows PC.
The timing is the following:

. The installation of PolySpace products takes around 5 minutes (see the complete installation
guide is available from the PolySpace installation CD-ROM in \Docs\Install\PolySpace_Install_Guide.
pdf).

. The first step of this tutorial takes about 15 minutes.

. The second step of this tutorial takes about 15 minutes.

. The first step of this tutorial takes about 5 minutes.

Release 2007a+ 16/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.1.2. Installation Guide
Note: If the PolySpace products are already installed on your computer, please go directly to step 1.

The PolySpace products are delivered on a CD-ROM. There are 4 modules:

1 PolySpace Client for analysing single files.

2 PolySpace Server for multi-file or composite analysis.

3. PolySpace Viewer is the graphical user interface to explore the results computed by PolySpace
Server or PolySpace Client.

4 PolySpace Spooler is the graphical interface to manage analysis done remotely.

Please refer to PolySpace installation manual for installing the PolySpace products.

Release 2007a+ 17/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.1.3. Structure of this document

Once the installation is done for a PolySpace Client, you can launch PolySpace by using the following
icons that were placed on your desktop:
Shortout

? PolySpace Spooler q PolySpace “Wiewer
r Shortout Shortout
A2 - ke td 2 KB 2 KB

Moreover, inside PolySpace Client and PolySpace Server, a PolySpace MISRA Checker is available,
allowing at compilation time to verify some of the rules recommended by the MISRA Consortium (more
about MISRA Consortium at http://www.misra-c.com).

This Getting Started will focus on the following four exercises using the Client, the Viewer, the
PolySpace MISRA Checker and the Server:

PolySpace Launcher

. During Step 1 we will analyze a simple file “exanpl e. ¢” by using PolySpace Client.

. During Step 2.we will review the results obtained during Step 1 by using PolySpace Viewer.

. During Step 3 we will use PolySpace MISRA Checker during the compilation phase of a
PolySpace analysis.

. During the last step, instead of performing a PolySpace Client analysis locally, analysis will be

sent remotely to a server.

Release 2007a+ 18/546
Revision 4.2 vA


http://www.misra-c.com/

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2. Step 1: PolySpace Client - Setting up and launching an
analysis of a single C file

This paragraph describes a basic file analysis. It focuses on the analysis of “example.c”, which is
included in the PolySpace installation directory and located at:
<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_C\ sour ces\ exanpl e. c.
The PolySpace analysis process is composed of three main phases:
1. First, PolySpace checks the syntax and semantic of the analyzed file(s). However,
as PolySpace is not associated to a particular compiler, benefits of this phase are triple for
the analysed source code: ANSI compliance, portability and maintainability.

2. Then, PolySpace seeks the main procedure. If none is found, PolySpace Desktop
will generate one automatically. By default, this function will call all public functions of the file.
3. Finally, PolySpace proceeds with the code analysis phase, during which run time

errors are detected and highlighted in the code.

Related subjects:
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.3. PolySpace Client: running the analysis

Release 2007a+ 19/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.1. Analysis prerequisites
Any analysis requires the following:
PolySpace products and its related license file correctly installed;
Source code files (in this case “exanpl e. ¢”) and all header files that it may directly or

indirectly include. For this tutorial we will see later that we need two header files “mat h. h” and
“i ncl ude. h”in order to analyse “exanpl e. c”.

All “-D” compilation switches necessary to compile the file are known. Please note that in
this tutorial, no “-D” is necessary to compile “exanpl e. c”.

Release 2007a+ 20/546
Revision 4.2 vA



PonSp

ace

TECHHOLOGIES

Previous Back to table of contents

2.2.2. Setting up a PolySpace Client analysis

“? Double-click on the PolySpace Launcher icon:

PalySpace Launcher
i Shorfcut

2 2 KB

Next

A dialog box window appears proposing to launch one of the following categories of analysis mixing the

type of product and the language:

PolySpace Client / Server Launcher

Select a product 1 Select a language
i Client Launcher i C
(" Server Launcher [ L+
[
] Cancel

The language to select depends on available installed PolySpace products.
“? Select “Cl i ent Launcher ”, language “C” and then, click on “OK”
The Graphical Interface of PolySpace analysis Launcher is displayed as below:

Release 2007a+
Revision 4.2 vA

21/546



& - a Tawrh riveral e o e sl e I.i_’l;\_:.?_l
feaea - Em [sLat B 4
Tl b Ao Pk ikt caimada
k]
i ek
e el ol 11
s pce powes elwogy
P e T
ek e rioray
Fiballe ol g Doy sy e sl |
Fies sl | - ex temnton=Sarsapaec-Eilen]
Pl D wciony | -isaulra-dir |
L =
-
] L]
I S B I B T MO |
i i ime mmin helealid O o i 0y YR o (o
E'!--w-hu St 1 1 e b iﬂ: !i.
i'.lil:
off ra )
Mﬂuﬂ-ﬁ D el ]

2 Click on File/New Project to start an analysis:

-2 PolySpace Client
=8 Edit Tools Help

- =1 p r-.:.j.g.:l: ;[E Gjﬂ b ™ EJ

':":5' Dpen project

W 5ave project [ Click here ko create a new project | e | = !
Save as new project e Path
¥ Quit Chrl4+0

The PolySpace Client New Project window opens. It contains four sections:

. At the very top, the title bar, which contains usual icons and menus;

. Top left is the list of files to analyze, along with include and results directories;

. Top right is the set of options associated with the analysis that will be processed;

. Finally the bottom area allows following the execution and progress of the analysis.

Release 2007a+
Revision 4.2 vA

22/546



.I-'.:.Ip‘.,n-'..'-': darer dor |

Ll L
oW X Hoid b B™oow
i it Ir_: _l Tawprr rimrral raes o P spigcheri e |.i_"|;\_:§|
- farw wian Lt B
Vi v rchby P o |
ey 1
T e e e S Pycasar s
Lot TR - b
s sl B
Frop I 1] L E
Lomwm et o 0w wropTy = -
AT e T -l Sy
tefEim pern 4 v g e e b 1 B
COATH s =T P VR SO e | I ~eurim il n nfrgfard
Lorfrne rum o own wrnggertoi Lese deieie e sl el s e Wi
B Tl o
e T o o P
& Pobfracs Fiss g
e | el i ]
Popspali g [wciony | - smilra-di |
£ T s e ___.
-
Fampye e | B Poncie [+]
. E " - T [ I ’ I 2 | Toini
0 £ (s e G o O Lode L] [ st ] il mirm il l]
laal |
E(-—w.hﬂ Tty i o b Iil. |Hl|
s
f Tl
i e

“? Start by updating the result directory name by clicking on the browse button :

sults Directorny [-resulta-dic]
QI'P'EI'EEIJEH_RE&IE

=]

This directory is the one where PolySpace Client will store the results of the analysis. By default, PolySpace will
store results in “C:\PolySpace Results”. This is the directory that we will choose for the analysis.

2 Now, Click on the lEl button (right of the “New Project” label). It opens the “Please select a file” window, from
which you can select one or several files to analyse.

Release 2007a+
Revision 4.2 vA

23/546



B Please select a file

(*.c) files oriby
[} Recirse subdieciories
Source files [-sources] Directories to inchide []

Lok J [ comcet |

72 In the “Look in” section, click on ™ and select “<Pol ySpacel nst al | Di r >\ Exanpl es\ Denp_C\ sour ces”.
A list of files appears in the box (<Pol ySpacel nst al | D r > corresponds to C. \ Pol ySpace
\ Pol ySpaceFor CandCPP in the figure above).

2 Select “exanpl e. ¢” and click on El in the “Source files [-sources]”section (bottom right) of the
window. The file is now listed among the source files to be analyzed.

Release 2007a+ 24/546

Revision 4.2 vA



' Please select a file

B example.c

[Z] intisksstions ¢

[E] main.c

I?__I single_fle_anabysiz.c
[ taskst ¢

[F] tasks2.c

L CaTies vl

[ Recurse subdirectories
Source fes [-sources]

(2]

CoPolySpace'd MExamplasiDemo Clsourcesiexamphs

“2Click on OK to go back to the “Pol ySpace Cient for C — New_Project” window.

Note: it is also possible to drag a directory or source files and drop it them directly in the “Fi | @ Name/ Absol ut e Pat h”
part (top left of PolySpace Client) without using the “Pl ease sel ect a fil e” window.

25/546

Release 2007a+
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.3. PolySpace Client: running the analysis

“2 Click on to start the analysis. Alternatively, you can click on the button in the title bar to run
PolySpace Desktop with the current setting.

Thewindow titled “Save the project as” opens. You can decide where to store the configuration
information related to the analysis. Here, create afile called “dennp” and save it under PolySpace result directory.

The full name of that filewill be“denb. dsk”.

B save the project as ...
|ﬁﬂ PolySpace_Results VI ,? ﬂll =

Loak irn:

by Recent
Cocuments

vy Documents

by Computer

% Session identifier i demn:ul |
by Metwark
Flaces Files of type: i*.dsk AT | | Cancel |

“2 Click on |I| to go back to the “PolySpace Desktop for C — New_Project” window and click again on

Release 2007a+ 26/546
Revision 4.2 vA



to proceed forward.

. Pty s Dirakilap fd

L= WPalySpaie R ullidéma, dekl

=

B comote Loy
hﬂlr

o railog

P R |

Puiils Daectiny [-sesuloe-din]
 VobySomes Meuly

B

3 [2]

][ =] . Sprth irerral e P T Sebeind IR
LT Lol Py
Spoiim i Mo Prosec :-m-n_
Csle el R ass
Autter roct e s
Preopis e gad II -yerilyer e
B #l1eih of o assayvenly o
Hotey il ity e Hhra ol e . Pl
Cordree e H oed smoen we e delecieg 2 S L T FoT R |
CnEres vl Tl DLETET CORSQI Al ___ -(mn.u-mm ]
L s
& Compbirs's wils fardadi
= PohySpace rre seliEpt
@ Fresop radng
4 [ e vt
L B I T e T L
L] et o) 0 eeloig ] fealecliyl k] 0 D0 0g 14
S oh iR Pe i E
Sractieqg att Ape &, D058 g:li:is
Beac) CYONTH _NT-5.0 WACY 1.0 L¥E0, AT/ 0700 néfd ondouoen
Mawg; Tovt
reE
VEE Wprilfying C adecrcas
R e e e R T P R e R Ty P R P L L R L e
Copyitey © paucces to C-ALL ... LE
OE-papger spleris {defewmle] Laplies: =B STOC =D GO =@ -3 GNOC ATNOE__=d =D CW(E =3 =D (WOC _MIWGE =8 =D Q00 ETW WARARCE  =Issnuw =D wmix =0

i

»

A progress report is displayed in the bottom part of the graphical interface, indicating that the analysis
is being performed. The b

Note: you may press the Stop Execution button -

but it is not part of the current tutorial.

button is also grayed out.

| @HmEmcwm |

- in order to interrupt the analysis

Related subjects:
2.2.3.1. Parsing errorsduring preliminary PolySpace analysis stages

2.2.3.2. Progression of theanalysis

2.2.3.3. End of theanalysis

Release 2007a+
Revision 4.2 vA

27/546




y E:Hnnmm ES
Previous Back to table of contents Next

2.2.3.1. Parsing errors during preliminary PolySpace analysis stages

After some checks, PolySpace will show an error message:

Message @

b
@ Verification process Failed

Let's try and understand why we get this error message.
First possible cause for the error message: Hardware recommendation
If this happens, please verify whether your computer meets the minimal hardware configuration

requirements described in section “Computer configuration”. Moreover, a message like the following one is
displayed in the bottom part of the graphical interface:

T 'Ei
; s % | [ e [ e [ e =3
o G 0 900 0 ol T 90 o0 [l T o Gdoan
a Corrplie Lo Lty e kg :H Frnd 'l:i
it o
h"‘ﬂ" WerEIVing hidL OHALlEIEeticn ..
¥ raicg Bewiry > :I‘“H | o LEOEN)
Tuwng: 5 160 3 O, [B736 Fh)
reg 3= ITFAA 3 Bo €= prpaa *
EHE port svaliable 1 1) ]
Sazinl pt coml] svadlable s o
Sachal piIE chal mvadlable o
¥ 1 srror ooared
Frosrs found when werifying B6SE configusatisn.
Tou wuss fix thes before lemching sain
& P —contizus -with-eolating-Baat L
R ]

2 Type “host” in the “Search in the log:” box and click on E' to search if the error corresponds to a hardware
recommendation problem.

If the error message corresponds to the one shown above and in order to continue analysis, you can either:
. upgrade your computer to meet the minimal requirements, or
. use the —continue-with-existing-host option which overrides the initial check for minimal hardware
configuration. To do so, please follow the following steps:
2 To set up the —continue-with-existing-host option, please type “continue” in the Search internal name from the

Release 2007a+ 28/546
Revision 4.2 vA



selected line

Search intermol name from the selscted ling ;| continus

@ - top right box -.

2 Then click on . It will show all options containing “continue” in the set of options part below:

Search internal name trom the selscted bne - | cortinge

* Complance with standards

Heame Wi Irterreal niaens
= General |
s a0 alenlitier Mew Project Hrog
Ciabe Qi 2005 it
Atieor Fiocd i i
Projact version 10 _ Ll -AraT 2300
Examing effecls of scalar sssignments [_] =
 Heep ol intermeciste fles i3 -kenp-al-fies
[ Continue éenvéen if red errors ané detected 8 _D_ ﬂ'ﬂl&“hjﬂf—mﬂ_ﬂ' >
Continue with the current configuration ] rconkbinue-wih-sxisting-host
* TargetiCompier

* PrecisonfScasng

i[5

-

72 Check the box
host” line as shown below.

lin the “Value” column that is associated to the “-continue-with-existing-

2 It isalso recommended to select the —continue-with-red-error option. Indeed, “example.c” contains — on purpose - code
with some definite errors, later called red errors. This option allows you to continue the analysis even if red errors are
detected in previous passes.

Emmlluﬂmusuum |

-oriirae with the current configuration |

EE

poonkine- Witk red-rror
~Cointinps-with-existing-host

Second possible cause for the error message: Information about Header files

Another cause of error may be that PolySpace Client misses some information about header files.

Release 2007a+
Revision 4.2 vA

29/546



==l ®

u | reaaes |"'i'.. ™ |_ ._""'_l' =" "Z_';'_.T '] L 0% | ol
e T~ B0 ] B0 MR 0o
ﬁ ""’“"_'W |.'|:-p:|l|.n:| C ssupcen B C-MA8L ... =
E“’ OF-rarget BRlarls (defawlc] Laplies) -D_STDE_ -p _ GERC__ =2 -D_ (W0 _NEESR =3 -0 (WO =3 -0 GG _NINOE_ =8 -0 GOC MEW YARARGY - -Damils -8 uhde - W
Pl Lag
exiaple. o l: mathukh: Fo soch Cile or dicectocy
T EE-maie o AWl T [ dspend] Exper XY
= Wefifi4E had Sctacied preprt-tdfding Sfzid|d] 1n EBe Si-de.
= Fisase ooTEeor them and lsrch e analysis sJuln,
polyspace-c 3 peoblem dexing cte-subf S62l b
L ¥
A TR

In the tutorial, as shown above, the file named “math.h” can not be found. To fix this problem, you need to
indicate its location. As PolySpace is not associated with one particular compiler, it is mandatory to indicate where

library files are stored.
In our “example.c” file analysis, the related “math.h” file is located in the same directory as the C file:

<PolySpacelnstallDir>\Examples\Demo_C.

? Open the “Please select a file” window by using |El button (right of the “demo.dsk” label in the top right of the
interface):

B Please select a file X

+OeBEB

o souwrces

[*.c) files oniby b
[} Recur se subdirectorses
Soarce fies [-sources] Directories to inchude [1]

30 3. 19

: CrPely SpacePoly Spelel or L E N ample S Demd _-U:S O CE s ample. L PolySpace ol spacer erliExamples Demd._LiSoUurces

Lok ] [ gamest ]

= = |
? Select “<PolySpacelnstallDir>\Examples\Demo_C\sources”, where “math.h” is located.
Release 2007a+ 30/546

Revision 4.2 vA



2 Click on in the “Directories to include [-1]” section, and then close the window using |I|

Notes:
1.  Other header file needed “include.h” is also located in same directory.
2. ltis also possible to drag a directory and drop it directly in the “include directories [-1]” part (top left of

PolySpace Client) without using the “Please select a file” window.

Release 2007a+ 31/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.2.3.2. Progression of the analysis

“? Click on to restart the analysis.

Some results may have already been written in the “C:\PolySpace Results’ directory, because of a

previous click on . Therefore a window opens to check whether you want to overwrite
in this directory or not:

@ The direckary CH\PolySpace_Resulks already exists,
Some files might be overwritten, Do wou wank to conkinue 7

| Yes || [ a] ||Cancel|

In our example, this is what we want to do. Click on , if it happens.

Note: closing the PolySpace Desktop window will not stop the PolySpace analysis. If you wish to

stop it, click on I €3 stop Execution I (a window of confirmation follows the click). If the window is
closed without stopping the analysis, it continues in background. Opening again PolySpace
Desktop with the same project automatically updates the analysis with its current status.

The progress bar allows to follow the progress of the analysis:

Release 2007a+ 32/546

Revision 4.2 vA



1 g |
Leweld ; 0% Level3 | 0% ] Levedd 0% | Tolsl

A progress report may be obtained by clicking on (B compte Lo for the compilation phase, or

i FurLog for the full analysis in the low level window. Click on ﬁf‘“* to get other
pieces of information about current analysis (list of options, stubbed functions, functions used

during main construction, checks found after each phase, etc.). Click on the icon to
refresh the summary.

Release 2007a+ 33/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.3.3. End of the analysis

When the analysis ends, PolySpace proposes to review the results:

® Yerification process completed.
L]
Do ywou wank ko launch PolySpace YWiewer 7

|_ Ik | | Zancel |

“? Click on E and go to next section of the tutorial to view the results.

If you click on , and if no other analyses are running, you can access the results

via the iF icon in title bar.

Release 2007a+ 34/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3. Step 2: PolySpace Viewer - Exploration of results

This step illustrates how to explore analysis results that were generated by either PolySpace Client or
PolySpace Server. We review the results of the analysis of “exanpl e. ¢” performed during Step 1.

PolySpace “Wiewer
Shortout
2| 2 KB

If the “OK” button has been clicked at the end of the previous analysis (see previous section),
PolySpace Viewer automatically opens results.

Related subjects:
2.3.1. Modes of operation

2.3.2. Downlaod resultsinto the Viewer

2.3.3. Analysing of PolySpace results (* example.c’)
2.3.4. Methodological asssitant

2.3.5. Report Generation

Release 2007a+ 35/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.1. Modes of operation

The first time The PolySpace Viewer is opened, a sub-window will appear after the splash screen of the
viewer. It is aimed to warn user about different modes of operation. User has to choose between
launching the Viewer in an “expert” mode or in an “assistant” mode. This sub-window appears only if a

previous PolySpace version was used by the current user on the current machine.

& New feature EIIEIEI

Please select. ..

The Viewer has two modes of operation.
Choose between:

- The new reviewr assistant wizard,

- Or the expert Viewer mode.

The resrew azsistant helps you to select and manage the checls to
he reviewed.

You will be able to zelect the munber of checks to be reviewed and
the "best" subset will be sorted out for you by Polyspace. The
Wiewer will then ouide you through these selected checlos.

Do not dizplay thiz meszage again

| Expert mode || Azziztant mode

The mode will define the reviewing process of checks highlighted during an analysis:
* In“Expert mode”: The Viewer is opened in a mode where all checks can be seen. The
number, the order and the categories of checks to be reviewed have to be selected by the
user himself (See next section).
* In*Assistant mode”: the reviewing rules for a C analysis results follows a methodology
selected by PolySpace. It concerns the “best” subset of checks sorted out for user. The
PolySpace Viewer will then guide user through these selected checks.

“2 For the need of this tutorial, please untick “Do not di splay this nessage agai n” and then
click on “Expert node”.

Note: Even if the user has chosen one mode it is easy in one click to change the mode inside the
PolySpace Viewer.

Release 2007a+ 36/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Back to table of contents

Previous

2.3.2. Downlaod results into the Viewer

After having clicked on “Expert node” the PolySpace Viewer window looks like the figure below:

[ e e P
[ W B = § =N -

PonSpace

TECEROLOGINY

l"I'IF":

v i e e i i ol = e v

“2 Click fil e>open to load result files. If you did not perform the analysis, you can still review the
results by opening the following file:
<Pol ySpacel nstal | D r >\ Exanpl es\ Deno_CQ\ RTE _px_O2_ Deno_C LAST RESULTS.rte

2 Using the “Fi | e>Cpen” menu, select the following file located in “C: \ Pol ySpace Resul t s”.

37/546

Release 2007a+
Revision 4.2 vA



B Please select a file

Lodkt i ,_'] P-i'!ﬂ_Epac:e_ijs

£ ALL
i—b ) PobySpace-Doc
My Recent RTE_p0_02_Cordrol_Data_Flow _Anabesis rie
Documents N ptE ot 02 Safety_Analysis_Level_1 rte
o fid RTE_p2_02_Satety_ansiysis_Level 2 rte
La Fid RTE_p3_02_Satety_Analysic_Lavel_3 e
Deskop [igd RTE_ps_02_Satety_analysis_Level_d.rte

3 02 Mew Propect LAST RESULTS e

2
8

My Compiser

e

Pleces

Files of lype: |+ p1a

File name: 'E;px,dzmﬁmmﬁéfﬁfﬁﬂ-ﬁﬂc
~

“2 Then click on to proceed with further steps

Note: The RTE px_O2 Denpo_C LAST RESULTS. rt e is a sort of “link” on the best analysis in term of
precision. This analysis is represented by RTE_p4_O2_Safety_Anal ysis_Level 4.rte file. Lower

level files represent lower precision analysis.

Release 2007a+
Revision 4.2 vA

38/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.3.3. Analysing of PolySpace results (*example.c”)

After loading the results, PolySpace Viewer window looks like below:

E PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_Hew_Project_LAST_RESULTS.rte
Eim Edt Tooh Windoes Hab
o MW = @R owm ) ol | R OBH Mv | s

X 7 e | | M e e e oaw o B me DR eam| e e e | e v
[y —— Court. Fro :ra'?rn-uc--:u-nwu-cm
B DhC At s ne |
e e ] e |
L ¢ ey PRl ] rm | .-
oM
7 | | =
Procesus sntbes 0] % freewee ] 2] % ] = @Call Tree View
s hiew_Prr it 4 3 51 .

o 100
W AT [ O o
E 1]

W __polpgatestdshibe g O

PonSpace

TECHNOLOGIES

in partnershap with cne< jv

| | Mo Prabect - Bowre e podripse man Polpipee_mamt Line: 1 ColmiT rniwn

1. Onthe leftis the run-time error view (or RTE View). It displays the list of files analyzed in the “Procedural entities”
column.

2. Inthe bottom right area is the source code view with coloured instructions. Each operation checked is displayed using
meaningful colour scheme and related diagnostic:

e Red: Errors which occur at every execution.

* Orange: Warning — an error may occurs sometimes.
«  GCrey: Shows unreachable code.

«  Green: Error condition that will never occur.

3. The two windows just below the tool bar concern details of a currently reviewed check (when the check has been
selected):

Release 2007a+ 39/546

Revision 4.2 vA



Cocingg 1evEre pRaEreEs Praogoagh " W DRl DuATeely eeied
bt Lt ]

il FirisraeRi |l B Pl Rl |
Tt ol Pl

EE'EE

] [

4. The top right area is used for displaying both control and data flow results. You can switch from one view to the other

by using the “Windows” menu:

. PalySpace Viewer - C:\PolySpace_Resulis\RTE _px 02 Mew_ Project_LAST _RESULTS.rie

l:;I MafE ¢ Binha 'BHI: Gamvs FII“H“

Swatch bo Varisbdes view
Switch bo Call Tres view

™= RCICEL R

Procedural erdifies ’ll

Swatch to Call Tree view |

Related subjects:
2.3.3.1. Procedural entitiesview (RTE View)

2.3.3.2. Coloursin the Sour ce code view
2.3.3.3. More examples of run-timeerrors
2.3.3.4. Advanced results exploration
2.3.3.5. Miscellaneous

Release 2007a+
Revision 4.2 vA

40/546



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

2.3.3.1. Procedural entitiesview (RTE View)

Each file and underlying functions in the procedural entities view (or RTE view) is colorized according to the most critical
error found:

. . This file contains the main which was automatically generated. All checks there are
no run-time error (or RTE) has been found.

« example.c. This file is red: one or more definite run-time errors have been found in it.

e polyspace_stdstubs.c contains no checks. It contains stubs of standard functions part of libc library used in
example.c.

? Click once on the = left of “example.c” to find out more about this file.

“example.c” is expanded and the list of functions defined within “example.c” is displayed. The functions in red or grey
have code sections that need to be inspected (Pointer_Arithmetic(), Square_Root(), etc.) first because they are definite
diagnosis of PolySpace (either runtime errors or dead code).

Release 2007a+ 41/546
Revision 4.2 vA



B PolySpace Yiewer - C:\PolySpace Results\RTE_px_02_Mew_Project_LAST _RESULTS.rte
Fie Ede Tock Windeen Heln
S @ oo B ow 1 e 2T e i
¥ +OF e pe (M ER e o e ome g [HR oae | S e e s o e e
Coxhre rpverw prograss =T | Progoeas Y e DR DARTRNRY BERONE
i craci neiecied e iy
o vl il v (1| ) . |
i ey Wl Tl Pl |_ 7
Frccecud enifes L‘Hm v I E | "I
sk b Project a| 3
= 4| O g ]
- i Mew_Project
5 (]
Jar __Pobyspace_ sidubuls erno
-
ATE (]
R O
Poot d
- r
)
1 fincluds <mach.h>
g ]
¥ i A B 2 finsluds “imoluds. k"
C B0 3
v C o 4
L
F __polyapace_ sichluba o o o &
F __PONSOCE_Then [ O o 7 f* Internal funccion L
B * Maaded for HIERA-yula B.1 %/
9 Atatic imt get oll pressurs [wold] |
1o atatic veld Cloxs To IZero [woldly
11 atatie Let Hem Iafinlte Loop {wold]
12 atatie vold DPoincer Arithmecic [welid)
13 atatic vold Recursion [Lec* depth):
14 atatis weid Fecurslen caller (vold];
15 aratic vold Sguare Root copw [double alpha, floar *bece ptl) b
. | 5 »
I TiMew Fromel Soutefe eamohe weamoMc  Lned Colmnunkmewn

The columns (ﬂ, l] iJ EJ i]) provide information about run-time errors found in each function:
. The ﬂ column indicates the selectivity (level of proof),
. The l] column indicates the number of definite run-time errors or reds,

. The i] column indicates the number of warnings or oranges (that may hide run-time errors that do not occur
systematically),

. The i] column indicates the number of safe operations or greens

. The i] column indicates the number of unreachable instructions or grey code sections.

. The FE¥EWEH column allows ticking the check as reviewed (mark of review for the user)
Let’s have a look at some error found by PolySpace in “example.c”.

First example of runtime error found by PolySpace: Memory Corruption

Click on = to expand “Pointer_Arithmetic()" to find out more about the red error. It displays a list of red, green, and orange
symbols, featuring the complete list of code areas that PolySpace checked within the “Pointer_Arithmetic()” function.

Release 2007a+ 42/546
Revision 4.2 vA



\Procedural enfies
oz Mew_Project
# _ polyspace_main.c

| = EXample.C

E Pointer_Arithmetic { )

+ IDF 4

“2 Click on the red “IDP.9” item - which stands for lllegal De-referenced Pointer -, to precisely locate this error in the
source code. The bottom right section is updated showing the location of the “IDP.9” item.

72 Click on red symbol in the source code at line 104. An error message is opened:

[Exror : pointer is outside its bounds

Pointer p is de-referenced outside of its bounds. Indeed, at the line 71 the instruction “*p = 5;” corrupts the memory as it
puts the value “5” outside of the array “tab” pointed to by the pointer “p”.

Information about this red IDP is also accessible in the right windows below the toolbar line and the left one gives some
statistic about all the IDP in the analysis:

Cscling réviend progress Conrd Progress | 1 ewsmpls o fPoinler_Artresstic ine 104 § cobumn 10
Ll
& nenvieered | nb P to review (Red) il ] |
i perwinad b 16 rivviee (Red) 1 0] x ®p = 57 /* Dut of bounds */
TieMnnd rEabdly nde alie TS 8l A/
Ilii"_'.'. I pol1nNter 185 = s | itz bounds

“? You can also see the calling sequence leading to that particular red code section. To do so, select “IDP.9” item in the

“Procedural entities” column in the RTE View, and then click on the '5—"! icon (on the top left of the PolySpace Viewer
window) to display the corresponding run-time error access graph:

Release 2007a+ 43/546
Revision 4.2 vA



B Error call graph for example.Pointer_Arithmetic. IDP. 9 - PolySpace Yiewer

polyspace_main.c example.c example.c exanple.c
main RIE Pointer_Arithmetic IDP.9

Second example of runtime error found by PolySpace: Unreachable code

2 Select “Unreachable_Code()” in the RTE View. You can see that “x = x + 1" is unreachable (gray colour on each
check) because of the non satisfied boolean condition: “X” is never negative when evaluating “x<0". PolySpace has
detected some dead code.

Release 2007a+ 44/546
Revision 4.2 vA



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

gtatic void Unreachable Code (void)

{

/{* Here we demonstrate PolySpace Verifier'™s ability to
identify unreachable sections of code due to the
value constraints placed on the wvariables.

&f

int ® = random int (};
ant ¥ = randem int ():
if (x> y)
X = o _.;
if (x < 0)
[
= x + 1;

? Click on red * symbol in the source code at line 104. An error message is opened:

B example.Pointer_Arithmeti... E“E-El

in "example " ling 104 column 10
Source code

[Exror : pointer is outside its bounds

Pointer p is de-referenced outside of its bounds. Indeed, at the line 71 the instruction “*p = 5;” corrupts the memory as it
puts the value “5” outside of the array “tab” pointed to by the pointer “p”.

? You can also see the calling sequence leading to that particular red code section. To do so, select “IDP.9” item in the

“Procedural entities” column, and then click on the "J\’l—“-s icon (on the top left of the PolySpace Viewer window) to display
the corresponding run-time error access graph:

Release 2007a+
Revision 4.2 vA

45/546



l Error call graph for example.Pointer_Arithmetic.IDP.9 - PolySpace Viewer E |@|@

polyspace main.c example.c example.c example.c
main RTE Pointer Arithmetic IDP.9

Second example of runtime error found by PolySpace: Unreachable code

? Select “Unreachable_Code()” in the RTE View. You can see that “x = x + 1” is unreachable (gray colour on each check)
because of the non satisfied boolean condition: “x” is never negative when evaluating “x<0". PolySpace has detected
some dead code.

Release 2007a+ 46/546

Revision 4.2 vA



Release 2007a+
Revision 4.2 vA

199
200
201
202
203
204
205
206
207
208
0%
210
211
212
213
214
215
216
217

gtatic void Unreachable Code (void)
/{* Here we demonstrate PolySpace Verifier's ability to
identify unreachable sections of code due to the
value constraints placed on the wvariables.

L
{ int X = random int (};
int ¥ = random int ()
af (x> .y)
[
= H ¥i
if (2 < 0)
[
X=X+ 1;
}
b
M=

47/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.3.2. Colours in the Source code view

Each operation checked is also displayed using meaningful colour scheme and related diagnostic in
the source code view as links:

* Red: A link to the error message associated to the error which occurs at every execution.
e Orange: Alink to an unproven message — an error may occur sometimes.

e Grey: A link to a check shown as unreachable code. The error message is in grey.

. : A link to a VOA (Value on Assignment) or an error condition that will never occur in

the list of verifications made by PolySpace.

 Black: represents some comments, source code that does not contain any operation to be

checked by PolySpace in terms of run-time errors and optimized operations, e.g. x = 0;
»  Blue: text highlighting the keyword “pr ocedur e” and “f uncti on”.
*  Underligned blue: A link to a global variable in the “Global variable View”.

Release 2007a+ 48/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents

2.3.3.3. More examples of run-time errors

Unlike most other testing techniques, PolySpace provides the benefit of finding the exact location of
run-time errors in the source code. Below are some examples that you can review with PolySpace

Viewer.

@ Inan First example of the second set: Arithmetic error

“2 Click on= to expand “Squar e Root () ” function. Y ou can see the source code view in the bottom right.

Y ou can also display the call tree for that function by using the “Windows’ menu (see previous paragraph).

“Squar e_Root () " iscaled by RTE function from “exanpl e. ¢”. Itisdisplayed as”exanpl e. RTE” in

the “Call tree view” window (right of the top right section).

“Squar e_Root ” cadls“random f | oat “ (automatically stubbed function),
“Squar e_Root conv” (fromexanpl e. c)and“sqrt” (standard library).

179 static void Square Root_ conv (deouble alpha, fleat *bketa pt)
180 f* Parform arithmetic conversion of alpha to beta */
181 {

182 *beta pt = (float) ({1.5 + cosz(alpha))/5.0);

183 ]

154

185 static veid Square_Root (void)

186 I

187 doubla alpha = random Tloat ()]

188 float beta:

189 float gamma;:

180

191 Square Root conv (alpha, &beta):

192

193 gamma = (float)ggrEt(beta = U.75); /* always sqrt (negative number)
194 [

*f

Release 2007a+
Revision 4.2 vA

49/546



The green sections into the source code view are error-free but thered (sgr t ) isan issue that needs to be
fixed. Indeed, when the local float variable gamra is computed in theline “ganma=sqrt (beta —
0. 75) ; “, the operation will cause arun-time error, as the parameter passed to “sqrt ” is aways negative.

Note: using —voa option at launching time, PolySpace can help more suitably by giving information of range
on scalar assignment

@ Second example of the second set: Non-Infinite loop

“2 Select “Non_Infinite_Loop()” in the “Procedural entities” column in RTE View. The function is fully
green: it means that the locale variable x never overflows, even if the exit condition of loop deals with
y that is smaller than x. PolySpace confirms that the function always terminates.

66 static int Nen Infinite Loop (void)
&7 i const int big = 1073741821 ; /* 2**30=-3 */
BB int x=0, y=0;

69

70 while (1)

71

72 {

73 if {y > big) | break:)

L X = 25

758 yo= 23

76 }

77

T8 ¥ o= 100;

iy return y:

g0 ¥

@ Third example of the second set: Errorsdueto wrong value passed to a function call

“? Select “Recursion_caller()”: The first call to Recursion is in red because when a negative
parameter is passed, Recursion makes a division by zero (See the “Recursion” function). PolySpace
also checks recursive constructs:

Release 2007a+ 50/546
Revision 4.2 vA



137 static void Recursion (int* depth)
138 /* if depth<0, recursion will lead to division by zeroc */
139 { float advance;
140
141 *depth = *depth + 1:
142 advance = 1.0f/ (float) (*depth); /* potentiaml division by zeroc */
143
144
145 if (*depth < 50)
146 i
147 Recursion (depth);
148 }
149 }
150
151 static void Recursion caller (void)
152 [ int H=random int (};
153
154
155 if ((x>-4) && (1 < =-1))
156 (
157 Recurzion( &= ) ; Ff always encounters a division by zero
158 }
159
160
16l x = 10:
162 1f (random int () > 0)
163 {
164 Recurzion( &x ) ; /* never encounters a divisieoen by zero */
165 }
leé b
Release 2007at T 51/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.3.4. Advanced results exploration

You can filter the information provided by PolySpace to focus on the type of errors you wish to
investigate.

There are pre-defined composite filters “Alpha”, “Beta”, “Gamma”, “User def” and “Filter All” that you
can choose depending on your development process:

E PolySpace Yiewer - C:\PolySpace_Results\RTE_px_02_MHew_Project_LAST_RESULTS.rie
File Ede Tock Wik Help

ki L5 - "j{ m LY i o= -_:_ wat Epal gl '..:'_'“

L sang | o ] [ T: ] g
- 4 J = e L R SN - sl ||| s || e || o | o ||

Mo chech nelechad Ty iy 1
wibs v | nb B oy (e iy rely 4 Lll i

rvasa e reliakali reiealve raln raln

s
[ — Cont Progress. | Mocheckoumenl ® |

2 Select the | __'to get all the “red” and “grey” code sections. It is mainly used during the earliest
development stages to focus quickly on critical bugs.

? To illustrate the use of these filters, we will focus on the Square Root function that we have

examined in the 3.3.2 section. Select! | to reduce the information checks related to “Square_root()".

= Sguare_Root( )
X
b 4
t NTC 4

This list of acronyms - for type of operations checked - shows what PolySpace automatically analyzed
for you.

The || level highlights checks that could cause a processor halt, memory corruptions or overflows.

2 Click on || mode which is the default mode. Select again “Pointer_Arithmetic()” in the “Procedural
entities” view and then, click on & to get the list of the checks.

Release 2007a+ 52/546
Revision 4.2 vA



)

To get the comprehensive list of operations checked by PolySpace, you can switch to

" mode. You may also want to use filters to focus on particular categories of errors.

Those filters are located at the top of the PolySpace Viewer window:

W Polyipace Viewer - C:\PalySpace_Resalts\RTE_px_02_Hew_Project_LAST_RESULTS.rte

Ela Edf Taoh WWedwes  Hop
NI I T

j:'\-.l":‘ e | L --.wwpl',\!;m':\_:".-'l.l.ur.il i || o

Note: When the mouse pointer moves on the filter, a tool tips gives its definition.

F|i1|-r g |
? Click on | *" | (top of the window) to suppress all checks and click on | . You will get list of
checks containing only IDP (lllegal Dereference Pointers) reds, or greens:

= Pointer_Arithmetic ( )
o DR
t IDPS

T

+ [OP 24

? Click on ! ."f. (top of the window) to suppress green code sections. You will get a reduced list of
checks reds, and grays:

EH Pointer Arithmetic [ )
t IDFP 39

¥ ;

Release 2007a+ 53/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.3.5. Miscellaneous

The ¥ icon gives access to the PolySpace Manual. All views have a pop-up menu (right
click on mouse).

“? Close the PolySpace Viewer window by clicking on the upper right tﬂ symbol
(PolySpace Viewer can also be closed using “File>Close").

Release 2007a+ 54/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.3.4. Methodological asssitant

After a first navigation into the PolySpace Viewer, some simple questions remain:

. Do all checks need to be reviewed?

. What are the checks to review?

. How many?

. What is the best order?
The Methodological assistant aim to answer to all theses questions: It helps to select and manage the checks to
be reviewed. It selects a “best” subset and sorts out them. The Assistant mode in the PolySpace Viewer will then
guide the user through these selected checks.

2 If the PolySpace Viewer is still open, close it by clicking on the upper right E‘I{ symbol, open it again, load
same results and chose “Assi st ant " mode.
After having loaded the results in “Assi st ant ” mode, PolySpace Viewer window looks like below:

HPalySpace Viewer - C:APolySpace_Results\RTE_px 02 _MHew _Project_LAST_RESULTS rie
Fili fod Took iWrokes eip

B 5 W B w 1 el g d 1 e
_ 0 O HL B >R P
L e Omum Fro ? M P ey sl

S P |
! -
e L ot e
-

B e [ R M L]

i w ey r. L |l|l~1—| R <) W
Bl

PeEbARRCE  TRES A

B _ [ AGSEE P
y ECHHDLE:GI[I
e rnp'-: R
Related subjects:
2.3.4.1. Assistant dashboard
2.3.4.2. Choose a methodological assistant
Release 2007a+ 55/546

Revision 4.2 vA



PonSpace

Previous

TECHMOLOGIES
Back to table of contents Next

2.3.4.1. Assistant dashboard

The second line of buttons on the toolbar and the two views just below are the navigation centre based on the

methodological method used in the assistant mode:

T -
1 - 3

Clssipguveracs # € 8 > B 2

Cotineg nindew [ ognis Dot Prg, 1 Mo cieeci curnanty sebschsd
taa chwch selecled ns e [1

il e FrdD 1o resverey Crial iy ] !

Tafveirn rolnbdEy ndcalon i ni | —

Some other changes can be seen in the viewer:
1. Now, in the “Procedural Entities” view the list of files analyzed is sorted by the methodological

assistant used.

2. Inthe bottom right area is the source code view with coloured instructions. Each operation will be
checked and sorted by the methodological method using meaningful colour scheme and related
diagnostic and in the following order:

* Red: Assistant browses all errors which occur at every execution.

» Cray: Assistant browses each block of unreachable code depending if radio button
“Ski p gray checks” has been ticked or not.

 Orange: Assistant chooses and reviews the “best” warning operations —errors that may

occur sometimes.

“2 Click on .to navigate to next check.

The PolySpace Viewer has been refreshed with the first check selected by the Methodology of review:

Release 2007a+
Revision 4.2 vA

56/546



H PolySpace Viewer - C:\PolySpace_Resuls\RTE_px_02_Mew_Project_LAST_RESULTS.rie
Fim e Took i il

B -~ AR w0 e
r———— | f— ]y e W LS W s B
1 1 'l
CH e SR Cinry Frowess ! eveepis o Porie _irfeetc [ e 104 ook 10
T e Y R R et ) o aft
T R = 1i Beom By % fwt of boumds =/
Lt o il P i i 0| 1

e ) Dy i !m R |
= . =
K Pt I g
o T | Wadishiel
1 swmpes RTE
_ PONADAOE_ MERLEY BT i =
w
'l

-

iChose To_ZJem §
Fon_infirde_Loop| )
RTE(]
Reiursion_caler | |
Souare_Root ([ )
LrrEacnabis Code | §
get_od_prevsre | |

4 __potyspace  sigiubab

4 __DOKSE0N PN L

Perw_Fromil Daurie e summoe L LTI e |

The Methodological dashboard gives details and allows reviewing the check. On the selected check, it is
possible to mark the fact that it has been reviewed.

“2 Tick the radio button box and type an associated comment in the associated edit box on the right.
After, it looks like:

Methadadagy for C ~i f-f; ] caip gray chacss 4 € @ o M e P

Coding review progress Cound Progress 1 example o / Pointer_Arihenslic | ine 104 J coluen 10

b IDP reviewsd [nb IDF 1o review (Red) nn | 100

reviewed § b bo review (Fed) 14 . 25l E
Saftwars relobiity indicator M5

®r = 5; f/* out of bounds */

&l =
= |E IEI have reviewad this check and inEerced a CORMART

Error : pointer is out=zide its bounds

The left part of the dashboard has been updated, and displays some statistics in three lines:
. The first line gives the number and percentage of remaining checks to review of the current category. In
the previous example, it concerns red IDP checks.
. The second line gives values in the colour category (red, grey and ).
. Last line gives in permanence the Sof tware reliability indicator.
Other buttons in the Methodological dash board allow navigating to previous check, coming back to current one

and going to next / previous reviewed checks of the selected category by the Methodology.

Release 2007a+ 57/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.4.2. Choose a methodological assistant

Methodaology for C b it
Methodology for Ada

Methodalogy for C

hMethodalogy for C++

Methodalogy for Model Based Deasigned

<
and associated levels 1 2 1 have been pre-

selected by PolySpace.

The methodology allows selecting the categories of checks to review, the number for each category
and their order depending of a statistical algorithm.

The level (or criterion) defines the number of checks to review by category. Explicit name have been
associated to each criterion like “Fresh code”, “Unit test”and “Code revi ew’

It is possible to refine asel f cr eat ed one or define its own Methodology. The “Pr ef er ences

Pol ySpace Vi ewer >Assi st ant mnet hodol ogy” Tab is accessible from the “Edi t ” menu.

B Preferences PolySpace Viewer

Tooir Werss | Tsbie opbora | Tosllzars cpfonms | Wocolisrecan | Sasesiant comdsparabon
Thez o ahior e mlieas W dorbrabion, o Hurmsiser of checlls o nrviars
MY ] g Wl P e ey R CrfrEn 1 Crlewdnd Crilesion ]
rewesy ariend Crermon
8wl i
» Craealion: Of & rerw cOnSpUEion oel
. Dbty ! W vt T Tl s
Siffererd e Crinrm (uged s kool g ol L
o s ), COR
- Dorlinitions ol 5 e russber oF ool o P
P i) 1id SN [abpry TFad D (Tr]
0 & poaive raenber up i B P
5 Tl v [ A 0 ALY 0wt i e
i chagie
0 Tl il s D S0 0 AL b0 bty | © 8 Come iy
chech celsobon | Las iy | 1Y)
o
[ =
L
oy
L)
i i o
FHT
T
{3
FE
L)
Farvars Brmpheld orievion
B
L= Lk
. . LE
Crierion 1 o
i
S Ewy
= . i "
-5 | I Biny | [ ] |

You can create a new configuration set and deflne for each criterion what will be the categories of
check to review and how many in each one.
Note: It is not possible to refine an existing configuration except by duplication and refinement.

Release 2007a+ 58/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.5. Report Generation

When PolySpace performs an analysis, it generates textual files that can be used to generate Excel® reports.
These files are located in the results directory (See " C. \ Pol ySpace_Resul t s\ Pol ySpace- Doc" or

“<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_C\ Pol ySpace- Doc”).

All views (except source code) are printable and can be exported to textual or Excel® format (protected by
license).
The "C: \ Pol ySpace_Resul t s\ Pol ySpace- Doc* directory should contain the following files:

& C:\PolySpace_Results\PolySpace-Doc Ei@@

File Edit ‘iew Favorites Tools Help

@B'Hk v ? r_,.r-:SMT'I:I'n l Folders oy | P X w

Address || ) PolySpace-Doc | ' Go
Mame =~ Size  Type Date Modified
=| News_Project_Call_Tree 3KB  Text Document 5{9/2007 2:15FM

] Meve_Project_RTE_View 14KB  Text Document 5192007 2:15 PM
j Mew Project Variable View 1EB Text Document Sf9/2007 2:15PM
= New_Project-NON-SCALAR-TABLE-APPENDIX 0KB PSFie 5/9/2007 2:13 PM
= PolySpace_Macros ¥LS File 5/9/2007 2:15 PM

2 Open the file called “Pol ySpace_Macr os. x| s”, enable macros when asked and then the following window
opens:

Release 2007a+ 59/546
Revision 4.2 vA



| A B C O E E (5 H

1

7 Copyright @ Polyspace Technologies, 1999-2006

3

4 apply Filkers? Generate checks by file?
5

5 “ Mo filters * yes

; ©" Beta filters ™ ho

5

10 Help \ llse this button to create the complete synthesis in one file. Help
=elect the RTE export view and afile in which to save results.

::; If the other views are in the same directory as the RTE view

e then they will automatically be incarporated into the same file.

14 Generate PolySpace Results Synthesis |

15

15

17 Reports can be generated from all PolyEpace ti file format results. These are generated
18 by the PolySpace Verifier during an analvsis, the export option in the PolvSpace Viewaer,
19 of frorm the command line using the "gen-excel-files” command.

20

21 Individual PolySpace text result files can be processed using the below macros:
22 |

23 The macros are:

24 BTE Apply ta RTE views exported from FolySpace Wiewer

a5 all Tree Apply to Call Tree views exported from FolySpace Yiewer
9 A e Apply ta Yariable views exparted from PaolySpace Viewer
2 S

20

e “ersion 3.4.10 RTE = Run Time Errar

30

_ Generate PolySpace Results Synthesis _ _
“2 Click on A file browser opens. Select the file called

“New_Proj ect RTE Vi ew. t xt ” as shown below:

Release 2007a+ 60/546
Revision 4.2 vA



Select a RTE View text file

Regarder dans : Ilifl PolySpace-Doc _:_] e e - Outils =
| - =] Mew_Project_Call_Tree.t:t

_. Qﬁ I ElMewe Project RTE_View bt

Histarique =] MNew_Project_Variable_‘iew. b

L -.'4.':}{“_

| Mes documents

Mom de Fichier : |

Cvrir

Favoris réseau Tvpe de Fichiers : ]Te:-:l: Files [*,kxt)

annuler

After a few seconds, an Excel® file is generated. It contains several spreadsheets related to the application
analyzed.

I Application Call Tree | Shared Giobals /| Giohal Data Dtionary /. Checks by fle [ Check Syrthess | Launching Options / RTE ~> Al checks icaton / Crange 01|

For example, in “Checks Synt hesi s” all statistics about checks and colors are reported in a summary table.

Release 2007a+ 61/546
Revision 4.2 vA



A B ICIBlE|F| &

1 RTE Statistics

2 Check category Check detail R O Gy % proved
_3 |0BAI Out of Bounds Array Index 0100 0.00%
4 MIVL Uninitialized Local Variable 001 100.00%
5 |IDP lllegal Dereference of Pointer |1 1 | 88.8%%
_ B |MIP Uninitialized Pointer 1010 |0 £ 100,00%
_F NIV Uninitialized Variable 0100 - 100.00%
8 IRV Initialized Value Returned 0 (0|0 100.00%
9 [COR Other Correctness Conditions |0 0 |0 100.00%
10 |ASRT User Assertion Failure 000 0.00%
11 |POW Fower Must Be Positive 0 0|0 0.00%
217DV Division by Zero 0|10 80.00%
13 |SHF Shift Amount Within Bounds ([0 [0 |0 0.00%
14 |OVFL Overflow 1013 |2 | 76,92%
15 |UNFL Underflow 011 |2 | N.67%
16 |UOVFL Underflow or Overflow 013 |0 67.14%
AT |[EXCP Arithmetic Exceptions 000 0.00%
18 |[NTC Mon Termination of Call 300 100,00%
19 [ k-NTC Known Non Termination of Call ([0 0 |0 0.00%
20 |NTL Mon Termination of Loop 00 |0 0.00%
_21 |UNR Unreachable Code 010 |0 0.00%
22 [UNP Uncalled Procedure 1010 |0 0.00%
= IPT Inspection Point 1010 |0 0,00%
24 OTH other checks 0100 0.00%
25 [Total : 419 |5 32.17%

This ends ways of results review.

Release 2007a+
Revision 4.2 vA

62/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.4. Step 3: Setting up and launching the MISRA-C checker

This paragraph describes the basic steps to add the MISRA-C Checker in the

analysis of “example.c”. This operation takes place during ANSI C compliance phase
of the analysis.

Related subjects:
2.4.1. Prerequisites

2.4.2. Selecting MI SRA-C rulesto check
2.4.3. Running the M1 SRA checker

Release 2007a+ 63/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.4.1. Prerequisites

If PolySpace Client is already opened with the project defined previously (refer to Setting up a
PolySpace Client analysis), you can skip the following two actions.

“2 If PolySpace Client has been closed, please open it again by double-clicking on the
PolySpace Client icon:

PaolySpace Launcher
Shartout
2 KB

? Select the saved project:

B Po lySpace Client

Edit Tools Help

L..j Mew project
u__:_:' Open project

1% IIF'| || _||:| e F' =T | 'I|:||-r||||,|:|5|-:2,

Ql_ul: Parses the pru:u]ect Chr+0

The project created during first step of this guide needs to be updated as follow:

? The “Check MISRA rules” option needs to be activated while selecting the parameters. To set up the —misra2
options, type “misra” in the “Search internal name from the selected line”

Search internal name from the selected ine | misra -!-top right box -

? Then click on . It will show all options containing “misra” in the set of options part below. Tick the “Check
MISRA-C: 2004 rules” option and expand it to see the two associated options —misra2 and —includes-to-ignore :

Sl Joheck MISRA-C- 2004 rule= | bitpcihererw pobys il
Rules configuration ':I_-'r'fs"’?
Files and direclories (o ignore gﬁm-tnqwe

We will detail theses two options below.

Release 2007a+ 64/546
Revision 4.2 vA



? Make sure “example.c” is selected (location from <Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_C

dem dsk

&

File Marms

B

\'sources): I

? Update the results directory:

Abzolite Path

CPolySpaceld SExamplesiDemo_C\Sources

Results Directory [-cesults-dir]
' cﬁ&,rs:pm_iimﬁmqs

The Launcher should present the following options. The Launcher needs to look like that:

.I'.'-I.‘..'.J-'.:- L

et lor |

LWkt nace Heaullsbdema duik

i e i} | vl vermm
Ergrwrw piiecis of come wrgrvssndy !I.‘_.I | i
iy P e e e T ] | im] | resspesbiiem
Coriue e d vs oo w e debecked '"_- | S ol |
Lt B T | im] oINS W
Cortr pemn on w1 agperied L dinki =] i A g EEe e
i larget i e
T Coeplerey i Swoaa
L W T W Tyl = | raou
v Erstmowd grieres |
T & e | ~xinct
e et e 0 T s
o 1o Ty Al e i | e T 2 P s W ™. £ (i’ 4 B TR || | -:Hu'b-ll-n-mn |
' b=y 1
= L -2 L P e L
P (ot i g R
1 Pl et direciorem B grore Lobrans oy
Parpalin Daeciony | -pesalta-din| 4 HEELE gt feailY ] | et
g —— E v Drairacs pre sefegy
~ e Freardoung el
50
[ [ #emase | o
T S L T U O ST T
0 (G 0 miam g i T T ] i mam i m sl
o commie g heweeri g [14] [#+]
h'lﬂ.l
ﬂl’um
s g e |

Release 2007a+
Revision 4.2 vA

65/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.2. Selecting MISRA-C rules to check

Related subjects:
2.4.2.1. File configuration

2.4.2.2. Discard header filesfrom MISRA Checking

Release 2007a+ 66/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.4.2.1. File configuration

“2Click on ] next to invoke “Rul es conf i gur at i on”. This button has been enabled during activation of
“Check M SRA-C. 2004 rul es”.

e foad of craate a fils to edl nies configuration.

“Click on Ll It creates a new MISRA-C configuration file. The previous window is updated:

Release 2007a+ 67/546
Revision 4.2 vA



B Hew File

St the foloseirg stale o of MESRA nades | Error b IE]

Rules Exror Warning | Off Comments
MISRA C rules

PR Ervviccervent )

T J Language sxdentions

3 Documesnt ation

4 Characler seds

‘= 8 Declarations and defindions
+ 9 lrdtialsation

® 10 Arithmetic typs corversions
£ 11 Poirder type COnversions

7
2
:

13 Condrol stﬂemgr.t e::.pre:simt_
A4 Confrol floer

15 Swilch statements

16 Functions

17 Poirker and arrays

|19 Preprocessing dreclives

20 Stanciand Sbrares

21 Fun-lime fadures

RN R R A

C o ) cmn ]
Each rule can be set as follows:
. “Er r or ": this MISRA-C rule must be respected. If one or several errors are detected, the analysis will
stop at the end of the compilation phase.
. “War ni ng”: if this MISRA-C rule is not respected, a warning will be displayed, but the analysis will
continue.

. “OF f ”: the MISRA-C rule will not be verified by PolySpace MISRA Checker module

The default setting for all rules is “War ni ng”.

Sef the follcwing stabe to all MISRA rules - Error w @
Warning | Off Comments

?For the MISRA-C check of “example.c” file, please update the setting to “Off” for all rules and apply it using the
button

2 Click on * to expand the set of rules 16. — “Functions”. The status of some of the underlying rules cannot be

Release 2007a+ 68/546
Revision 4.2 vA



modified (rules 16.7 and 16.10), others are “Off”. Click on the “Error” column for rule 16.3 - the green dot
E moves from column “Off” to column “Error”-. This means that PolySpace MISRA Checker will verify

whether the rule 16.3 (“Identifiers shall be given for all of the parameters in a function prototype”) is respected and will

stop after the ANSI compliance checking phase if this is not the case.

New File
File

Set the following state to all MISEA, rules ilef b o

l Rules
| 1+ 1 Environmernt

Warning

off

Comments

= 2 Lahguage extensions

Pt

21 Aszembly language shall be encapsulated and isolated

(5]

(@]

(@)

2.2 source code shall only use * % style comments

1538

@

158

2.5 The character sequence M shall not be used within & comment

@]

Q

O]

2.4 Sections of code should nat be 'commented out’

3 Documentstion

4 Character sets

5 Identifiers

E Types

¥ Constants

& Declarations and definitions

9 Initialisation

10 Arithrmetic type conversions

11 Pointer type conversions

12 Exressions

135 Control statement expressions

14 Control flow

15 Switch statements

16 Function=

| =
| =
B
| =
| =
B
| =
| =
| =
B
| =
| =
B
=

16.1 Functions shall not be defined with variable numbers of argumernts.

16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype decls
16.4 The idertifiers used in the declaration and definition of a function shall ke ider]

16.5 Functions with no parameters shall be declared with parameter type woid.

16.6 The number of arguments passed to a function shall match the number of par

YT
W W W

5

16.7 A poinder parameter in a function prototype should be declared as pointer to g

16.5 All exit paths from a function with non-void return type shall have an explicit f

16.9 A function identifier shall only be used with either a preceding &, or with a pa

O

OG- 0CCEC0

1610 If a function returns error information, then that error information should be 1

17 Pointer and arrays

18 Structures and unions

A0 Drormrmeascira clivactivoe

Ok

J

Cancel

2 Click on * to expand the set of rules 17 - “Pointers and arrays” - and select “Warning” for rule 17.4. This means
that PolySpace MISRA Checker will verify whether the rule 17.4 (“Array indexing shall be the only allowed form of
pointer arithmetic”) is respected and display a warning message if this is not the case.

Release 2007a+
Revision 4.2 vA

69/546



New File
File

0o W

Set the fallawing state to sl MISRA rules © |OFf -

Rules

MISREA C rules

Errar

Wk hing

Off

Comments

Murnber of rules by mode :

3

133

1 Environment

2 Language extensions

3 Documentation

4 Character set=s

5 ldentifiers

E Types

7 Constants

g Declarstions and definitions

9 Initislisation

10 Arithmetic type conversions

11 Paointer type conwversions

12 Exressions

13 Control statement expressions

14 Contral flow

15 Swritch statements

16 Functions

I (& | | | | | | ||| D D D |

17 Painter and arrays

17.1 Paointer arthmetic shall only be applied to pointers that address an array ar ary

17.2 Pointer subtraction shall only be applied to pointers that address elements of 4

17.3 =, ==, =, == =zhall not be applied to pointer types except where they point to th

17 .4 Array indexing shall be the only allowed form of poirter arithrmetic .

[ 43]

17.5 The declaration of ohjects should cortain no more than 2 levels of pointer indi

17.6 The address of an ohject with automatic storage shall not be assigned to an g

(@]

60

©EC

18 Structures and unions

19 Preprocessing directives

20 Standard libraries

B |E (& |EH

21 Run-time failures

< | »
Ok ] [ Cancel ]
“? Click on I] A “Save As ...” window opens, enabling to save the current
configuration. Type “m srar ul es. t xt ”in the “C.: \ M SRA r esul t s” directory.
Release 2007a+ 70/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents

2.4.2.2. Discard header files from MISRA Checking

You can disable MISRA verification on predefined files. For example, you may want to disable the

MISRA-C verification of “mat h. h”, included in “exanpl e. c”.

2 To do so, click on L] next to the —includes-to-ignore option. The “Files and directories to ignore”

window opens, enabling to disable the verification of MISRA-C rules on selected files and directories.

Files and directaries to ignore [-includes-to-ignore]

ERE

CHPolySpace 3 MExamples'Demo_Cigources

rrath b

? Select “math.h” using the browse button and click on IJ to close the window. This file will

not be checked.
This ends the setting up of the MISRA-C checking phase.

Release 2007a+
Revision 4.2 vA

71/546



PonSpace

TECHNOLOGIES
Back to table of contents

Previous

2.4.3. Running the MISRA checker

“2 Before starting this analysis of “example.c” with MISRA-C checker, Select “File>Save as new project” and

choose another name for the current PolySpace project.

H PolySpace Client for C - C:\PolySpac
Edit Tools Help

|_:] Mew project
{_,'.' Open project
H Save pru:uject

1 C
! it Chrl+G

“2Click on to start the analysis.

During the new analysis performed on “example.c”, a new filter button is displayed - ﬁmm
view. This button enables the user to filter out messages associated to the MISRA-C Checker.

- in the log

I-.ht-lu-.l\.lr | 'ﬂ_
= [ [ = [ T P =l
O o () Lodeeli] o (g Dk L=deni] [ ELivE ] e 0y
E‘I'.-:Hl:ﬂ'-.':g
EH’.-I'AL:\-:
i'.li:
1 FulLeg
Ly e

At the end of the compilation process, PolySpace Desktop shows the following error message:

Release 2007a+
Revision 4.2 vA

72/546



Message

-
r-@ Werification process Failed

“2 Click on .

The analysis has been interrupted, because the MISRA-C checker found that rule 16.3, marked as “Error”, has
not been respected. A list of MISRA-C errors and warning messages appears in the bottom window.

If we focus on the MISRA log using appropriate filter Bf resraLog , only messages associated to MISRA-C
checker are displayed.

Also, the “Search in log” box permits to navigate into log file searching for an appropriate key word: a particular
rule for instance.

Verifying Cfiles ...

Verifying exanmple.c

Verifying sources ...

Verifying exanple.c

.Lsources/include.h:34 : MSRA-C ERROR : rule 16.3 (required) violated.
| Identifiers shall be given for all of the parameters in a function prototype
decl arati on.

exanple.c:97 : MSRA-C WVARNING : rule 17.4 (required) viol ated.

| Array indexing shall be the only allowed formof pointer arithnetic.
exanple.c:113 : MSRA-C WARNING : rule 17.4 (required) viol ated.

| Array indexing shall be the only allowed formof pointer arithnetic.
exanple.c:117 : MSRA-C WARNING : rule 17.4 (required) viol ated.

| Array indexing shall be the only allowed formof pointer arithnetic.
exanple.c:121 : MSRA-C WARNING : rule 17.4 (required) viol ated.

| Array indexing shall be the only allowed formof pointer arithnetic.

“2 Here, the recommendation is clear — an identifier is missing in a function prototype and must be added in
“include.h” as required by MISRA-C rule 16.3. Once this is done, you can re-launch the analysis.

Note: You can also change the setting on rule 16.3 from “Error” to “Warning”, and launch the analysis again. The
error message will change to “MISRA-C WARNING”, and the analysis will not stop after the ANSI checking
phase.

When no error remains after the ANSI checking phase, the analysis continues as described in step 1, and will
give results as described in step 2.

Note: A log file, located at the root of the “C:\PolySpace_Misra_Results” directory with “.log” as suffix, contains
all messages displayed in the bottom window, including MISRA-C messages. The format of the log file name is

Release 2007a+ 73/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.5. Launch PolySpace Remotely
This paragraph describes the basic steps to launch an analysis in remote. To do so you need:
1. A Queue Manager server (QM) installed.
2. Your desktop PC configured with a PolySpace Client.
3. A networked machine configured with a PolySpace Server.
Please see the PolySpace Installation guide (available on the PolySpace CD-ROM in \Docs\Install or
the PolySpace Install Guide Manual) to install and configure a Client and a Server.
Note: Launching an analysis remotely requires a PolySpace Server product and associated license.

Related subjects:
2.5.1. Steps of Launching
2.5.2. Management of PolySpace analysisin remote: the PolySpace Spooler
2.5.3. Batch commands
2.5.4. Shar e analyses between accounts

Release 2007a+ 74/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.5.1. Steps of Launching
You need to follow theses two simple steps:

« Step 1: prepare an analysis. You need to set up an analysis like it has been described in step 1
without launching it.

* Then you just have to tick the “Remote analysis” radio button (see next figure) and then, click on

to launch the analysis.

P eae] [ P o
[Fometan 0% | coea on | Lovet on | wnow | Lemoon | Lot 0% | v
OO0 (e 20 DOD0noey O O o) A0 O (LIR1SHLE] L HRE 1] (0 0
E"mw Search in the g IE' IEI
B
& Fuin
Lt . I

The analysis starts and the compilation phase is performed on the desktop PC. At the end of the “C source
verification phase” the analysis is sent to the Queue Manager server. By clicking on the “Ful | Log” tab, you will

have a message like that:

I A OF [ Ll - I [— l Level?: (7 | L ved Tetel
D0 33 AT e (A LEL i) £ Ok ) Lagr sy} (DO ) O 0 o O 3T
Hl:ﬁrﬁth!-j Seanch inthe g 'Hl |H' |
|
,ﬁﬂlﬂ Frdirg ag: Eac LT, 2006 17:54:52 el
_i‘: Full Log Dass tisa £o5 Fudf: 16,.Teeal, 9.3u & &3 (Dge)

Generating cemote file
Plpeg time for polyspace-gos L8 dreal, 100w + d.082 (Gac)

T

##E Frld of Polydpace Werifler analysis
e

Addirg the analyais to the queeus ...

Teansfecing the acchive Eo the sarvet .,

Transfer cospleted.

Analysis ID © 4

The analysis has been gaeusd, Tou way follow its progress using the spooler,

At o cirtetetnd

The analysis has been queued with an ID humber and you can follow its progression using the PolySpace Spooler.
Without ticking the “Renpt e anal ysi s” radio button, the analysis continues locally.

Release 2007a+ 75/546
Revision 4.2 vA



y BHHDLGGI ES
Previous Back to table of contents Next

2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler

You can see the PolySpace jobs on the remote queue by clicking on the short cut on your desktop PC

PolySpace Spooler
r Shortout
£l o ke &

— or on the icon

in the menu bar of the launcher.

') ) = [ = LIE == [: & [}
Operations  Help
Dy | Ao i Resuks di CPU Slabss Data Language|
1 ! ADASS
F polyzpace Dema C_Deskiop e \RESULTSA\RES4 EERGEROM | complated | 28-Dec-2006, 123332 C
Conneched to Queua Manager localhost User mode -
= |

When you select an analysis (by clicking on the left button of the mouse), you can manage it in the queue (see
next figure):

# PolySpace Queue Manager Interface |T|[E|[g|

Date
S3Dec-2006, 12224
J0-Deac-2006, 123332

Wiew log file ..
Download results ..,
Download results and remove from quous ...

Demo T l.'ll-; shehis

Iawe down in queus

Kill ard download results ..
Kill and remove from queue ...

Remove from queue .., E miode p

 Fol | ow progress. This action lists the associated log file in a Launcher window. If the analysis is
running, you can follow on the Launcher window the update of the log file and associated progress bar in
real time.

* View log file. This action lists the associated log file in a “Comrand pr onpt ” window. If the
analysis is running you can follow on a “Conmrand pr onpt ” window the 100 last lines update of the log
file in real time.

 Downl oad resul ts. This action downloads results of an analysis on the client. The download is not
possible for a queued analysis. If the analysis is still running, available results are downloaded on the
client, without disturbing the analysis. Note that using “Downl oad results and renmove fromthe

Release 2007a+ 76/546
Revision 4.2 vA



queue ..”: Theresults will be lost.

e Myve down in queue. This action reduces the priority of a queued analysis.

* Kill and downl oad results. This action works if the analysis is running. The analysis will be
definitively stopped and the results will be downloaded. The status of the analysis changes to aborted.
The analysis remains on the queue.

« Kill and renove from queue. This action works if the analysis is running. The analysis will be
definitively stopped, and the analysis will be removed from the queue. Note: The results will be lost.

* Renpve from queue. This action removes a queued, aborted or a completed analysis. Note: The
results will be lost.

The queue can be managed from an administrator point of view with the “Operations>" menu:

« «Operations>Purge queue”. This action purges the entire queue or purges only completed and
aborted analysis (see next figure). The password of the queue’s manager is required.

Purge queue B]

Flease select the action wou want to perdform and type the administrator password

Actian IF"urge completed and aboned analysis  w |

Furge the entire queue

SRR Furge complated and aborted analysis

Ik Cancel

 «(perations>Change root password”. This action changes the password of queue
manager. Note: by default this password is “administrator”.

Release 2007a+ 77/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.5.3. Batch commands

e Launch analysis in batch:
A set of commands allow the launching of analysis in batch (under a cygwin shell On a Windows

machine). All theses commands begin with the prefix <Pol ySpaceComonDi r >/

Renot eLauncher/ bi n/ pol yspace-renot e-: pol yspace-renote-c and pol yspace-
r enot e- deskt op- ¢ ( by default the <Pol ySpaceCommonDir> is “C:. \ Pol ySpace

\ Pol ySpace_Conmon”) .

They are equivalent to respectively the commands with a prefix <Pol ySpacel nstal | Di r >/
bi n/ pol yspace- . For example, pol yspace-r enot e- deskt op-c —server
[ <host nanme>: [ <port>] | auto] allows the sending of a C client analysis remotely.

 Manage analysis in batch:

In batch and on a UNIX platform, a set of commands allow the management of analysis in the
gueue. All theses commands begin with the prefix <Pol ySpaceCommonDi r >/

Renot eLauncher/ bi n/ psqueue-:

o psqueue-downl oad <I D> <results dir>: download an identified analysis into a
results directory. [ - f] force download (without interactivity) and —admi n —p

<passwor d> allows administrator to download results. [ —ser ver <nanme>[: port]]
selects a specific Queue Manager. [-v|version] gives release number.

o psqueue-ki |l <I D>:kill an identified analysis.

o psqueue-purge all | ended: remove all or finished analyses in the queue.

o psqueue- dunp: gives the list of all analyses in the queue associated to default Queue

Manager.
o psqueue- nove- down <I D>: move down an identified analysis in the Queue.

o psqueue-renove <i d>:remove an identified analysis in the queue.

0 psqueue- get - qm ser ver : give the name of the default Queue Manager.

0 psqueue- progress <l| D>: give progression of the currently identified and running
analysis. [ - open- | auncher] display the log in the graphical user interface of launcher.
[ -full] gives full log file.

0 psqueue-set - password <ol d password> <new passwor d>: change

administrator password.
o psqueue- check- confi g: check the configuration of Queue Manager. [ - check-

| i censes] check for licenses only.
o psqueue- upgr ade: Allow to upgrade a client side (cf. Pol ySpace I nstall guidein
the <Pol ySpaceCommonDi r >/ Docs directory). [ - | i St - ver si ons] gives the list of

Release 2007a+ 78/546
Revision 4.2 vA



available release to upgrade. [ -i nstal | -versi on <versi on nunber> |-
install-dir <directory>]] [-silent] allow to install an upgrade in a given
directory and in silent.

Note: <Pol ySpaceCommonDi r >/ Renot eLauncher/ bi n/ psqueue- <conmand> - h gives
information about all available options for each command.

Release 2007a+ 79/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.5.4. Share analyses between accounts

Analysis-key.txt file

From a security point of view, all analysis spooled on a same Queue Manager are owned by the user
who sent the analysis from a specific account. Each analysis has a unique cryptic key.

The public part of the key is stored in a file anal ysi s- keys. t xt associated to a user account. On a

UNIX account, this file is located in:
* “/hone/ <user nane>/ . Pol ySpace”
On a Windows account, it is located in:
e “C \Docunents and Settings\<usernane>\ Application Data\ Pol ySpace”.

The format of the ASCII file is the following (spaces are tabulation):
<id of launching> <server nane of |IP address> <public key>

where <publ i ¢ key>is avalue inthe range [ 0. . F]

Example:

1 nl20 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 nl20 2860F820320CDD8317C51E4455E3D1A48DCES76F5C66BEEF391A9962
8 nml20 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6CL2FCA

When we make an attempt of management (download, kill and remove, etc.) on a particular analysis,
the Queue Manager will examine this file and find the associated public key to authenticate the analysis
on the server.

If the key does not exist, an error message appears: “key for analysis <I D> not found”. So sharing an
analysis with another user account necessitates the public key.

Sharing an analysis is quite simple, ask to the owner of the analysis the line in anal ysi s- key. t xt
which containing the associated <l D> and put it the line in your own file. After, it will be able to
download the analysis.

Magic key or share analysis between projects
A magic key allows sharing analyses without taking into account the <l D>. It allows same key for all
analysis launched by a user account. The format is the following:

0 <Server id> <your hexadeci mal val ue>
All analyses spooled will have this key instead of random one. In the same way, if this kind of key is
available in an anal ysi s- key. t xt file of another user, it allows to authorize any operation on any
analyses pushed with this key.
Note: It only works for all analysis launched after having put the magic key in the file. If the analysis
has been launched before, the allowed key associated to the ID will be used for the authentication.

Release 2007a+ 80/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

2.6. Summary

After having followed each steps of this tutorial, you are now able to launch an analysis using
PolySpace Client, enabling or not the MISRA Checker phase, and explore some results with

PolySpace Viewer. All theses command can be performed locally on your desktop PC or in Client/
Server architecture.

You will find more information on advanced options available with our tools in “Pol ySpace C
docunent at i on. pdf ” available on the CD-ROM (in <Pol ySpacel nst al | Conmon>\ Docs

\ Manual s) or by clicking on g in PolySpace tools.

Release 2007a+ 81/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3. Analysis setup

Related subjects:
3.1. Compileerrors

3.2. Link messages

3.3. Stubbing errors

3.4. Intermediate language errors
3.5. Advanced setup

Release 2007a+ 82/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.1. Compile errors

PolySpace may be used instead of your chosen compiler to make syntactical, semantic and other static checks.
These errors will be detected during the standard compliance checking stage, which takes about the same amount
of time to run as a compiler. The use of PolySpace this early in development yields a number of benefits:

*  detection of link errors, plus errors which are only apparent with reference to two or more files;
*  objective, automatic and early control of development work (perhaps to avoid errors prior to
checking code into a configuration management system).

Related subjects:
3.1.1. Messages

3.1.2. Compiling Operating System dependant code (OS-tar get issues)
3.1.3. Target specific issues

3.1.4. Assembly Code

3.1.5. Dealing with backward " goto" statements

Release 2007a+ 83/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.1. Messages

Some examples of compilation errors are detailed below:

Related subjects:
3.1.1.1. Syntax error

3.1.1.2. Undeclared identifier
3.1.1.3. No such file or directory
3.1.1.4. Compilation errorswith key words. @interrupt, @addr ess(OXABCDEF)

Release 2007a+ 84/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
3.1.1.1. Syntax error
Log file Code used
Verifying conpilation.c \voi d mai n(voi d)
conpi lation.c:3: syntax error; found "x' expecting ;' {
conpi | ation.c:3: undeclared identifier "x' int far x;
X = O;
X ++;
}

The “far” keyword is unknown in ANSI C. At “compilation” time, it therefore causes confusion - should it be a variable, or
maybe a qualifier? The construction “int far x;” is illegal without any further information, and hence it is a syntax error. Here

are some possible corrections:
. Remove far from the source code;
*  Define far as a qualifier such as const orvol atil e;
*  Remove far artificially by specifying a compilation flag like: “ -
sign).

Dfar=*

(with a space after the equal

Note If you need to specify —D compilation flags which are generic to the project, then using the —

include option may be the most efficient solution. Refer to the “gather compilation options™ section.

Release 2007a+
Revision 4.2 vA

85/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents

Next

3.1.1.2. Undeclared identifier

Log file

Code used

conpi lation.c:3: undeclared identifier "X

voi d mai n(voi d)
d
X = 0;
X ++:

}

Should x be a float, an int or a char? The type is unknown, and therefore the compilation stops.

Sometimes variables are implicitly defined by certain cross compilers. They need to be declared before analysis begins, as

PolySpace has no knowledge about implicit variables.

Similarly “ SP” can be a interpreted as a reference to the stack pointer by some compilers, which may be dealt with by using

the —D compilation flag..

Note If you need to specify —D compilation flags which are generic to the project, then using the —
include option may be the most efficient solution. Refer to the “gather compilation options™ section.

Release 2007a+
Revision 4.2 vA

86/546



PonSpace

TECHNOLOGIES
Back to table of contents

Previous

3.1.1.3. No such file or directory

Next

Log file

Code used

conpilation.c:1: one_file.h: No such file or directory

#i ncl ude "one_file.h"

conpil ation.c:1: catastrophic error: could not open source
file "one file.h"

#incl ude "one file.h"

The file called “one_file.h” is missing. The include directory holding this file must be made known to PolySpace. Refer to the —

[ option in the launcher.

These files are essential for PolySpace to complete the compilation. They will be used:

»  for data coherency;
e for automatic stubbing.

Release 2007a+
Revision 4.2 vA

87/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.1.4. Compilation errors with key words: @interrupt, @address(OxABCDEF)

You might have the same error message as for a regular compilation error, as discussed previously
when using some non ANSI keyword containing for example @ as first character. But in this case, the
problem cannot be addressed by means of a compilation flag, nor a —include file — that is, the “gather

compilation options”.

In this case, you need to use the post-preprocessing command.
1. Create afile called ABC.txt, and save it under c:\PolySpace
2. Open it with an ASCII editor, and copy and paste the following text
#!/bin/sh
sed "sltiti/toto/g" |
sed "s/@interrupt//g"

3. Inthe launcher, specify the absolute path and file name in the -post-preprocessing-
command field using browse button on a Windows system.

Note: that under Linux, you must:
» enter the full path, such as / hone/ pol y/ wor ki ng_di r/ ABC. t xt , and
* make sure this file has execution permissions by typing: chnod 755 ABC. t xt .

Launch an analysis on the example “my_file.cpp” below, and confirm that the compilation phase
generates no errors.

voi d mai n(voi d)

{

@nterrupt // will be renoved by the command
int titi; // wll be replaced by “int toto”

int r=0; r++; t ot o++;

}

To confirm that the right transformation has been performed, open the expanded file “ny_file.ci”
which is located in the directory “ <resul ts_fol der>/ G ALL/ny file.ci”

Release 2007a+ 88/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2. Compiling Operating System dependant code (OS-target
iIssues)

Related subjects:
3.1.2.1. List of already predefined compilation flags

3.1.2.2. My target application runson aLinux OS

3.1.2.3. My target application runson Solaris

3.1.2.4. My target application runs on Vxworks

3.1.2.5. My target application runs neither on Linux, vxworksnor Solaris

Release 2007a+ 89/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

3.1.2.1. List of already predefined compilation flags

Theses flags concern predefined OS-target: no-predefined-OS, linux, vxworks, Solaris and visual (-OS-target

option).

OS-target

Compilation flags

-include file and content

no-predefined-OS

'D_STDC__

visual

'D_STDC__

-include <product_dir>/cinclude/pst-visual.h

vxworks

-D STDC
-DANSI PROTOTYPES
-DSTATIC=
-DCONST=const
-D STDC

-D GNUC_ =2
-Dunix

-D__ unix
-D__unix__
-Dsparc

-D_ sparc

-D  sparc
-Dsun

-D_ sun

-D sun

-D svr4

-D_ SVR4

-include <product_dir>/cinclude/pst-vxworks.h

linux

-D__STDC

-D GNUC_ =2

-D_ GNUC_MINOR__ =6

-D GNUC_ =2

-D_ GNUC_MINOR__ =6

-D ELF__ -Dunix -D__ unix
-D__unix__ -Dlinux -D__linux
-D_ linux__ -Di386-D_ 386
-D__ 1386 -Di686 -D__ 1686
-D 1686 -Dpentiumpro
-D__pentiumpro

-D_ pentiumpro

<product_dir>/cinclude/pst-linux.h

Solaris

'D_STDC__
D GNUC_ =2
D _GNUC_MINOR =8
'D_GNUC_ =2
D _GNUC_MINOR =8

-Dunix -D_ unix -D__ unix

-Dsun-D__sun-D_ sun
-Dsvr4  -D  SVR4

D GCC_NEW_VARARGS

-Dsparc -D__sparc -D__sparc___

INo —include file mentionned

Release 2007a+
Revision 4.2 vA

Note The use of the OS-target option is entirely equivalent to the following alternative approaches.

e Setting the same —D flags manually, or

»  Using the —include option on a copied and modified pst - OS-t ar get . h file

90/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2.2. My target application runs on a Linux OS
The minimum set of options is as follows:

pol yspace-c \
-OS-target Linux \
-1 /Jusr/local/Pol ySpace/ CURRENT- VERSI ON i ncl ude/ i ncl ude-1i nux \
-1 /usr/| ocal / Pol ySpace/ CURRENT- VERSI ON/ i ncl ude/ i ncl ude- | i nux/ next \

where the PolySpace product has been installed in the directory /usr/local/PolySpace/
CURRENT-VERSION.

Release 2007a+ 91/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2.3. My target application runs on Solaris

If PolySpace runson a Linux machine:

pol yspace-c \
-OS-target Solaris \
-1 /your_path_to_solaris_include

If PolySpace runson a Solaris machine:

pol yspace-c \
-OS-target Solaris \
-1 /usr/include

Release 2007a+ 92/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2.4. My target application runs on Vxworks

If PolySpacerunson either a Solarisor a Linux machine...

pol yspace-c \
-OS-target vxworks \
-1 /your_path_to/ Vxworks_include_directories

Release 2007a+ 93/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2.5. My target application runs neither on Linux, vxworks nor Solaris

If PolySpacerunson either a Solarisor a Linux machine...

pol yspace-c \
-OS-target no-predefined-0OS \
-1 /your_path_to/ MyTarget i ncl ude_directories

Release 2007a+ 94/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.3. Target specific issues

Related subjects:
3.1.3.1. Target specification (size of char, int, float, double...)

3.1.3.2. Generic/custom tar get

3.1.3.3. Address alignment

3.1.3.4.”KEIL” and “|AR” dialects

3.1.3.5. Keywordsto automatically ignore or replace, before compilation

Release 2007a+ 95/546
Revision 4.2 vA



y RZ HHOLOGIES
Previous Back to table of contents Next

3.1.3.1. Target specification (size of char, int, float, double...)

The type of CPU to be used at run time determines various characteristics of data representation such as data sizes, addressing, etc. These factors
determine whether some types of error (such as overflows) will occur or not.

Consequently, PolySpace must take the type of CPU used in the target environment into account.

PolySpace supports some of the most commonly used processors as listed in the table below. Even if the processor used in a target environment is
not explicitly mentioned, it is safe to specify one from the table which shares the characteristics listed.

Note: The targets Motorola ST7, ST9, Hitachi H8/300, H8/300L, Hitachi H8/300H, H8S, H8C, H8/Tiny are described in the next section.

Sizeof (size in bits) LITTLE/
char is BIG ptr diff type
char short int long |longlong | float double [long double| ptr ENDIAN
sparc 8 16 32 32 64 32 64 128 32 signed Big int, long
1 386 8 16 32 32 64 32 64 96 32 signed Little int, long
c-167 8 16 16 32 32 32 64 64 16 signed Little int
M8k /
Col dFire 8 16 32 32 64 32 64 96 32 signed Big int, long
(#1)
power pc 8 16 32 32 64 32 64 128 32 unsigned Big int, long
t me320C3x 32 32 32 32 64 32 32 40 32 signed Little int, long
sharc21x61 32 32 32 32 64 32 32 (#2) 64 32 signed Little int, long
[NEC- V850 8 16 32 32 32 32 32 64 32 signed Little int
hc08 (#3) 8 16 16 32 32 32 32 32 (Lf‘) unsigned Big int
hcl2 (#3) 8 16 16 32 32 32 32 32 32 (#4) | signed Big int
nmpeSxx (#3) 8 16 32 32 64 32 32 32 32 signed Big lt)nl:’g
Release 2007a #1 The M68k family (68000, 68020, etc.) includes the “ColdFire” processor 96/546
Revision 4.2 vA




#2 On this target, a double may be 32 or 64 bits long. Only 32 bits double are supported.

#3 Non ANSI C specified key-words and compiler implementation-dependent pragmas and interrupt facilities are not tokens into
account by this support

#4 all kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.

If none of the characteristics described above match, please contact PolySpace Technical Support for advice.

Note: The following table describes target processors that are not fully supported by PolySpace, but for which an analysis is possible. In the cases
listed below, the target processor mentioned in the “Nearest Processor” column can be selected as a near equivalent. Where the characteristics are

not identical between the target processor and its near equivalent, it is highlighted in red below. These mismatches need to be taken into account
during results review.

Sizeof (size in bits) char is ptr diff [Nearest target
char Short int long  [long long |float double long double |ptr type processor
tms4/0rix |8 16 32 32 N/A 32 64 64 (#3) 32 signed int, long  [i386
tme320c2x |16 16 16 32 IN/A 32 32 32 16 signed Int Unsupported

Release 2007a+
Revision 4.2 vA

#3 All operations on long double values will be imprecise (that is, shown as orange).

97/546



PonSp

ace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.3.2. Generic/custom target

Note The size of some basic types is configurable (-int-is-32bits option, compiler memory model option, near/far pointer syntax)

Note The alignment of some basic types with arrays and structures is configurable (depending on the compiler implementation or

optimization options). For example, when the alignment of basic types within an array or structure is always 8, it implies that the storage assigned

to arrays and structures is strictly determined by the size of the individual data objects (without fields and end padding).

Note The sign of char is configurable using -default-sign-of-char [signedunsigned]

ST7 (Hiware C compiler : HiCross for ST7)
<T7 Sizeof (size in bits) char is LITTLE/

char short int long long long  [float double long double [ptr ¥ BIG ENDIAN
size 8 16 16 32 32 32 32 32 16/32 Unsigned Big
alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8  |32/16/8 32/16/8 32/16/8 IN/A IN/A

ST9 (GNU C compiler : gcc9 for ST9)
<T9 Sizeof (size in bits) char is LITTLE/

char short int long long long  [float double long double [ptr ¥ BIG ENDIAN
size 8 16 16 32 32 32 64 64 16/64 Unsigned Big
alignment 8 Q Q Q Q g Q Q g IN/A IN/A

Hitachi H8/300, H8/300L
Hitachi H8/300, [Sizeof (size in bits) char is LITTLE/
H8/300L char short int long long long  [float double long double [ptr ¥ BIG ENDIAN
size 8 16 16/32 32 64 32 64 64 16 Unsigned Big

Release 2007a+
Revision 4.2 vA

98/546



alignment

’

y

’

’

‘16 |16 |16 ‘16 |N/A |N/A
*  Hitachi H8/300H, H8S, H8C, H8/Tiny
Hitachi Sizeof (size in bits) . ITTLE/
H8/300H, HS8S, char is
H8C, H8/Tiny |[char short int long long long  [float double long double |ptr BIG ENDIAN
size 8 16 16/32 32 64 32 64 64 32 Unsigned Big
alignment 8 16 32/16 32/16 32/16 32/16 32/16 32/16 32/16 IN/A IN/A

Release 2007a+
Revision 4.2 vA

99/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.1.3.3. Address alignment

PolySpace handles address alignment by calculating sizeof and alignments. This approach takes into account 3
constraints implied by the ANSI standard which guarantee that:

* that global sizeof and offsetof fields are optimum (i.e. as short as possible);
e the alignment of all addressable units is respected;
*  global alignment is respected.

Consider the example:

struct foo {char a; int b;}
*  Each field must be aligned; that is, the starting offset of a field must be a multiple of its own
size*®
*  So in the example, char “a” begins at offset 0 and its size is 8 bits. int “b” cannot begin at 8§ (the
end of the previous field) because the starting offset must be a multiple of its own size (32 bits).
Consequently int “b” begins at offset=32. The size of the struct “foo” before global alignment is
therefore 64 bits.

*  The global alignment of a structure is the maximum of the individual alignments of each of its

fields;

* Inthe example, global alignment = max (alignment char a, alignment int b) = max (8, 32) = 32
*  The size of a struct must be a multiple of its global alignment. In our case, b begins at 32
and 1s 32 long, and the size of the struct (64) is a multiple of the global alignment (32), so
sizeof is not adjusted.

* except in the cases of “double” and “long” on some targets

Release 2007a+ 100/546
Revision 4.2 vA



y E: HNOLOGIES
Previous Back to table of contents Next

3.1.3.4. ”KEIL” and “lIAR” dialects

In the typical embedded control application, reading and writing port data, setting timer registers and reading input captures etc. are commonplace. To
cope with this without recourse to assembler, some compilers associated to micro processor have specified special data types like sfr and sbi t . Typical

declarations are:

sfr A0 0x80
sfr Al 0x81
sfr ADCUP OxDE
shit ElI Ox9F

and so on. These declarations reside in header files such as r egxx. h for the basic 80Cxxx micro processor. The definition of sf r in these header files
customizes the compiler to the target processor.

When accessing a register or a port, using sf r data is then a simple matter but not part of standard ANSI C:

{

ADCUP = 0x08; /* Wite data to register */
Al = OxFF; /* Wite data to Port */
status = PO; /* Read data from Port */

El =1, /* Set a bit (enable all interrupts) */
)

Analyzing previous code with PolySpace is possible using the —di al ect option. This option allows the Keil or IAR C language extensions to be supported

even if some structures, keyword and syntax are not ANSI standard. The following tables summarize what is supported when analyzing a code which has
been considered as associated to a dialect kei | ori ar.

The following table summarizes the kei | C language extensions to be supported:

Example: -di al ect keil —-sfr-types sfr=8
Type/Language |Description |Examp|e Restrictions
Release 2007a+ 101/546

Revision 4.2 vA



cells of array of i nt and st ruct/ uni on integral
fields.

* avariable can also be declared as ext ern
bi t in an another file.

Type bit * An expression to type bi t gives values in bit x =0, vy =1, z = 2; pointers to bits and
range [0,1]. (x == 0); arrays of bits are not
«  Converting an expression in the type, gives 1 (y == 1); allowed
if it is not equal to 0, else 0. This behavior is (z ==1); _ _
similar to c++ bool type. (sizeof (bit) == sizeof(int));
Type sfr + The —sfr-types option defines unsigned sfr x = Oxf0O;, // declaration of sfr and sbit types are
types name and size in bits. vari abl e x at address OxFO only allowed in
»  The behavior of a variable follows a variable [Sfr16 y = Ox4EEF; _ declarations of external
of type integral. for this example, options need to be: - di al ect global variables.
«  Avariable which overlaps another one (in kei | —sfr-types sfr=8, sfri16=16
term of address) will be considered as volatile.
Type sbi t «  Each read/write access of a variable is str x = OxFO; _
replaced by an access of the corresponding sfr ~ [sbit x1 = x 7~ 1; Il 1st bit of x
variable access. sbit x2 = OxFO ~ 2; // 2nd bit of x
«  Only external global variables can be mapped SE': Xg - ?ng; A g /1 3rd bit of x
with a sbi t variable. sbit yo = t[3] " L
. Allowed . int iabl * filel.c */
owed expressions are integer variables, sbit x = PO A 1.

* file2.c */
extern bit x;
Xx = 1; // set the 1st bit of PO to 1

Absolute variable
location

Allowed constants are integers, strings and identifiers.

Int var _at_ OxFO
int x @OXFE ;
static const int y @OxA0 = 3;

Absolute variable
locations are ignored
(even if declared with a
#pr agma location).

Interrupt functions

A warnings in the log file is displayed when an
interrupt function has been found: "i nt er r upt

handl er detected : <nanme>"or"task entry
poi nt detected : <nanme>"

vol d Tool (vold)
using 99 {.}
void foo2 (void) _task_ 99 priority_
2 {.}

Interrupt XX = YY

Entry points and
interrupts are not taken
into account as —

entry-points.

Keywords ignored

al 1 en, bdata, far, 1data, ebdata, huge,
reentrant. Defining—D __C51
are ignored.

keywords | ar ge code,

smal |,
dat a,

sdat a, conpact, |arge,

xdat a, pdata and xhuge

Same table summarize the dialecti ar :

Release 2007a+
Revision 4.2 vA

102/546



Example: -di al ect iar —sfr-types sfr=8

Type/Language Description Example Restrictions
Type bit «  An expression to type bi t gives values in range [0,1]. pit y1 = s.y.z.2; pointers to bits and
«  Converting an expression in the type, gives 1 ifitis [PIt x4 = x . 4; arrays of bits are not
not equal to 0, else 0. This behavior is similar to c++ bool [Pt X5 = 0xFO . 5; _ allowed
type. yl =1; // 2nd bit of s.y.z is
* Ifinitialized with values 0 or 1, a variable of type bit is set to 1
a simple variable (like a c++ bool).
» Avariable of type bit is a register bit variable (mapped
with a bit or a sfr type)
Type sfr « The—sfr-types option defines unsigned types sfr x = Oxf0O; // declaration of |[sfrand sbittypes are
name and size. vari abl e x at address OxFO only allowed in
«  The behavior of a variable follows a variable of type declarations of external
integral. global variables.

» A variable which overlaps another one (in term of
address) will be considered as volatile.

Individual bi t access int x[ 3], y;
* Individual bit can be accessed without usingsbit/ |x[2].2 = x[0].3 + y. 1;

bi t variables.

» Type is allowed for integer variables, cells of integer
array, and struct/union integral fields.

Absolute variable Allowed constants are integers, strings and identifiers. Int var _at_ OxFO Absolute variable
location int x @OXFE ; locations are ignored
static const int y @OxA0 = 3; (even if declared with a
#pr agma location).
Interrupt functions  |A warnings in the log file is displayed when an interrupt Interrupt [XX] using [99] void [Entry points and
function has been found: "i nt er r upt handl er fool (void) { } interrupts are not taken
detected : funcnane" moni tor [YY] foo2 (void) { } into account as —

entry-poi nts.

Keywords ignored saddr, reentrant, reentrant_Idata, non_banked, plm bdata, 1data, pdata, code,
dat a, xdata, xhuge, interrupt, _ _interrupt and __intrinsic

Release 2007a+ 103/546
Revision 4.2 vA



no_i ni t attribute

* aglobal variable declared with this attribute is
handled like an external variable.
* ltis handled like a type qualifier.

no_init union { int y; } @ OXFE;

Unnamed struct/ *  Fields of unions/structs with no tag and no name can union { int x; };
union be accessed without naming their parent st r uct . union { int y; struct { int
* Option -al | ow unnaned-fi el ds need to be used . 1} @OxFO;
to allow anonymous st r uct fields.
*  On a conflict between a field of an anonymous struct
with other identifiers :
o with a variable name, field name is hidden
o with afield of another anonymous struct at
different scope, closer scope is chosen
o with afield of another anonymous struct at
same scope: an error "anonynous st ruct
field name <name> confli ct“is displayed in
the log file.
no_init 1nt Xx; #pragma no_init

has no effect

Associated option —sf r - t ypes, for keil or iar dialect, defines the size of a sf r type. The syntax for an sfr element in the listis t ype- nane=t ype-

si ze. For example —sfr-types sfr=8, sfr16=16 define two sfr types: sf r with a 8 bit size and sf r 16 with a 16-bits size. A value t ype- name must
be given only once and 8, 16 and 32 are the only available values for t ype- si ze. Note that as soon as a sf r type is used in the code, you must specify
its name and size, even if it is the keyword sfr .

Note that a wild number of IAR and Keil compilers associated to specific targets are currently existing and it is difficult to maintain a kind of list of those
which are supported or not.

Release 2007a+
Revision 4.2 vA

104/546



y R HNOLOGIES
Previous Back to table of contents Next

3.1.3.5. Keywords to automatically ignore or replace, before compilation

If you want to ignore non-compliant key words such as “f ar ”” or Ox followed by an absolute address, you can use
the template described below to deal with them. Save it under c: \ Pol ySpace\ nyTpl . pl , and select my Tpl .
pl in the PolySpace Launcher using browse button associated to —post-preprocessing-command.

Content of the ny Tpl . pl file
#! [ usr/ bi n/ perl

HHG R R R A R G R R R S R H R A R A R R R R T R R
# Post Processing tenplate script

# Copyright 1999-2005 Pol ySpace Technol ogi es.

#

BHG R R A R A R G R R S A R R R R AR R A R R R R R R T R R
Usage from Launcher GU :

1) Linux: [ usr/ bi n/ perl PostProcessi ngTenpl at e. pl
2) Solaris: /usr/local/bin/perl PostProcessingTenpl ate. pl
3) Wndows: /usr/bin/perl PostProcessingTenpl at e. pl

HHHHHH

HERHRHBHBHHHARHBHBHBHAHARH BHBH BB RS BHBHBHBAHBHBH AR RS RS RHBHBHARA RS BHBH A B RS

$version = 0. 1;
$I NFI LE = STDIN;
$OUTFI LE = STDQUT;

whi | e (<$I NFI LE>)
{

# Renove far keyword
s/farll;

# Renpove " @ OxFE1" address constructs
s/\ @sOx[ A-FO0-9]*//g;

# Renpve " @xFE1" address constructs
# s/\ @x[A-FO-9]*//q;

# Renove " @ ((unsigned) & ATD*8) +2" type constructs
s/\@s\(\(unsigned\)\ & A-Z0-9] +\*8\)\+\d//g;

Release 2007a+ 105/546
Revision 4.2 vA



# Convert current line to | ower case
# $ =~ tr/AZ a-z/;

# Print the current processed |ine
print $OQUTFILE $_;

}

Perl Regular expressions summary:

HEHBH RS HH TR AR R R R R R R R AR R R R R A R R R
# Met achar acter What it matches
BHG R R R R R B G R R S R R A AR S A R R A R B R R
Si ngl e Characters

Any character except newine

[ a-z0- 9] Any single character in the set
[Ma-z0- 9] Any character not in set

\d A digit sanme as

\D A non digit sanme as [”0-9]

\'w An Al phanuneric (word) character

\'W Non Al phanuneric (non-word) character

Whi t espace Characters

\'s Whi t espace charact er

\'S Non- whi t espace character
\n new i ne

\r return

\'t tab

\ f f or nf eed

\b backspace

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

A Mat ches to begi nning of |ine

$ Mat ches to end of line

Repeat ed Characters

X? O or 1 occurence of x

X* O or nore x's

X+ 1 or nore x's

x{m n} Mat ches at | east mx's and no nore than n x's
abc Al'l of abc respectively

t o| be| great One of "to", "be" or "great"

Remenber ed Characters

ST e S P St g L I S T Lt (I S S SN g N

(string) Used for back referencing see bel ow
\1l or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

HHG AR R A R A R G R S R R B R A R R A AR A R R G T R
# Back referencing
#

Release 2007a+ 106/546
Revision 4.2 vA



# e.g. swap first two words around on a |ine

# red cat -> cat red

# s/ (\w) (\w)/$2 $1/;

#

R R T A R R R S S S R T i B AT T T T T I R T

Release 2007a+ 107/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.4. Assembly Code

Ignoring assembly code by using the option “—discard-asm” can deal with many instances of assembly code
within a C application, but it is not always a valid route to take.

Ignored assembly instructions (they can be ignored manually or by option) will change the behaviour of the code.
For example, a write access to a shared variable can be written in assembly code. If this write access is ignored,
the analysis may produce inaccurate results. In such cases, please refer to the “Manual versus Automatic

Stubbing” section, which applies to functions as well as to stubbed instructions.

PolySpace is designed for C code only. In most cases, the option -discard-asm combined with —asm-begin and —
asm-end can be used to instruct PolySpace to discard a number of assembly code constructs:

Related subjects:
3.1.4.1. All statementsareignored: therest of the function remains unchanged

3.1.4.2. Following exampleis automatically stubbed

3.1.4.3. All following examples have an empty body

3.1.4.4. #asm and #endasm support

3.1.4.5. What to do if —discard-asm failes parsing an asm code section

Release 2007a+ 108/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.4.1. All statements are ignored: the rest of the function remains unchanged

Discarding assembly code by using the —discard-asm is an acceptable approach where ignoring the
assembly instructions will have no impact on the remainder of the function.

Also refer to the “Manual versus automatic stubbing”

int f(void)

{
asm ("%reg val; ntnsr val;");
asm("\tnove. w #$2700, sr");
asm("\ttrap #7");

asm(" stw ri1,0(r3) ");
assert (1); // is green
return 1;

}

i nt other_ignored6(void)

{

#define A MACRQ(bus_control |l er _node) \
_asm_ volatile("nop"); \
~asm_ vol atile("nop");
_asm__ volatile("nop");
~asm_ vol atile("nop");
_asm__ volatile("nop");
_asm_ volatile("nop")
assert (1); // is green
A MACR(( x) ;
assert (1); // is green
return 1;

\
\
\
\

}
i nt pragma_i gnored(void)
{
#pragna asm
SRST

#pragma endasm
assert (1); // is green

}
i nt other _ignored2(void)
asm"%reqg val; mnsr val;";
Release 2007a+ 109/546

Revision 4.2 vA



asm % reg val;
asm nt nsr val
assert (1); // is green
asm ("px = pm0, %&2); \
%0 px1; \
o4 px2;"
"=d" (data_16), "=d" (data_32)
"y" ((U _32 pm *)ram address):

"px");
assert (1); // is green
}

int other_ignored1(void)

{
__asm
{MOV R8, R8
MOV R8, R8
MOV R8, R8
MOV R8, R8
MOV R8, R8}
assert (1); // is green

}

int GNUC include (void)

{
extern int _ P (char * pattern, int _ flags,
int (*__errfunc) (char *, int),
unsigned *  pglob) asm_ ("gl ob64");

asm__ ("rorw $8, 9%0" \

=t (V) \

"0" ((guintl6) (val)));
_asm__ ("st g14,9%" : "=t (*(AP)));
_asm"" \

ot=Ert o (__t.c) \

"0" (((Cunion { int i, j; } *) (AP))++)->i));

assert (1); // is green
return (int) 3 __asm ("%reg val");

}

int other_ignored3(void)

{
_asm{ldab Oxffff,O;trapdis;};
~asm{ldab Oxffff,1;trapdis;};
assert (1); // is green
_asm_ ("%reg val");
_asm__ ("mnsr val");
assert (1); // is green
return 2,

Release 2007a+ 110/546
Revision 4.2 vA



}

int other ignored4(void)

{
asm {
port _in: /* byte = port_in(port); */
mov EAX, O
nov EDX, 4[ ESP]
in AL, DX
ret
port _out: /* port_out(byte, port); */
nov EDX, 8[ ESP]
nmov EAX, 4[ ESP]
out DX, AL
ret }
assert (1); // is green
}
Release 2007a+ 111/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.4.2. Following example is automatically stubbed

You must use the —discard-asm option.

PolySpace detects that no body is defined, and automatically creates a stub.
asmint n(int tt);

Also refer to the “Manual versus Automatic stubbing” section

Release 2007a+ 112/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.1.4.3. All following examples have an empty body
The user must use the —discard-asm option.

#pragmainline_asm(exl, ex2)
#pragma i nline_asnmexl, ex2)
int ex1l(void)
{

% reg val;

m nsr val ;

return 3;

b

i nt ex2(voi d)
{
% reg val;
nt mer val ;
assert (1); // is dead code because the whole body is enpty
return 3;

#pragmainline_asm(ex3)
#pragma i nline_asnm ex3)
int ex3(void)

{
% reg val;
m nsr val ;
return 3;

b

Compiler specific implementation: an empty body is provided

asmint I(int tt){}

Compiler specificimplementation: all statementsin the function body areignored.
asm
int h(int tt)
{
%reg val; // is ignored
nmtnmsr val; // is ignored

Release 2007a+ 113/546
Revision 4.2 vA



return 3; // is ignored

b

Also refer to the “Stubbing” section.

Release 2007a+ 114/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.1.4.4. #asm and #endasm support

The use of #asm and #endasm allows fragments of (typically) assembly code to be
disregarded by PolySpace, irrespective of whether the —discard-asm option is used.

Consider the following example.

voi d test(void)

{

#asm
nov _as: pe, reg
jre _nop
#endasm
int r;
r=0;
r++,
}
Explanation

By default, the usage of #asmand #endasmrequires the usage of the —asm-beqgin
and —asm-end options in the following way. The syntax to use this facility when
launching PolySpace in batch mode is:

pol yspace-c —asm begi n asm —-asm end endasm

Release 2007a+ 115/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.4.5. What to do if —discard-asm failes parsing an asm code section

There will be occasions when the —discard-asm option does not deal with a particular assembly code construction,
particularly when the code fragment is compiler specific (Note that you could also consider using the -asm-begin

and -asm-end options instead of the following approach).

Consider the example.

OCoO~NOOUITDrWNPEP

18
19
20

int X=12;

voi d f(void)
{
#pragma wi || _be_ignored
x =0;
x= 1/x; I/ no colour is even displayed
/'l not even C code
#pragma was_i gnored
X++;
x=15;
}

void main (void)
{
int y;
f();
y = 1/x 1/ (x-15); // x is equal to 15

}

As shown in the example above, any text or code placed between the two #pr agna statements is ignored by

PolySpace. This allows any unsupported construction to be ignored by PolySpace without changing the meaning
of the original code. The options to enable this feature are accessible through the Graphical Interface PolySpace
Launcher or in batch mode:

pol yspace-c —asmbegin wll _be ignored —asm end was_i gnored

Release 2007a+ 116/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.5. Dealing with backward "goto" statements

PolySpace is not designed to deal with backward “goto” statements, but MACROS provide a solution in most cases.
In general, the analysis of C code which includes (a) backward “goto” statement(s) will stop at an early stage, and a
message will appear saying that backward “goto” statements are not allowed by PolySpace.

Macros provided by PolySpace will work around this limitation as long as the “goto” labels and jump instructions
are in the same code block (and in the same scope). To insert these macros into the code:

. Edit the C file containing the “goto” statements;

. Add #i ncl ude “pstgoto. h" atthe beginning of the file (located in <PolySpacelnstallDir>/cinclude);

. Go to the the beginning of the block containing the “goto” statements;

. Just after the variable declarations (local to the block), insert the USE_1 GOT(X <t ag>) macro call;

. Just before the end of this same block, insert the EXIT_1 GOTO(<tag>) macro call (taking care with the
closing bracket "}");

. Finally, replace "goto <tag>" with "GOTO(<tag>)".

The following example would cause an analysis to terminate:

{
/* |l ocal variable declarations */
int Xx;
/* Instructions */
| abel 1:
goto | abel 1
}

And this could be dealt with in the following way:

#i ncl ude "pstgoto. h"
/* the pstgoto.h file is provided by PolySpace and its path */

{

/* |l ocal variable declarations */
int x; ..

USE 1 GOTQ(| abel 1);

/* Instructions */

| abel 1:
GOoT | abel 1) ;

EXI T 1_GOTQ(| abel 1):
}

The code block concerned may contain many different uses of backward “goto” statements. The use of

Release 2007a+ 117/546
Revision 4.2 vA



USE_n_GOTO() and matching EXIT_n_GOTO() statements will deal with this (that is, using USE_2_GOTO(),
USE_3 GOTO() etc). Note that pst got 0. h need to be copied from <Pol ySpacel nstal | Di r >/ ci ncl ude
directory and location added in the list of —I.

The code block may also use several different tags and/or multiple “tag” parameters can be used to deal with these

situations. So in the generic case, use:
USE n_GOTO (<tag 1>,
EXIT n_GOTQ(<tag 1>,

Consider the folowing example.

<tag 2>,
<tag 2>,

<tag n>);
<tag n>);

Original code Modified code for analysis
1 1
USE_1_GOT(( Reset ) ;
Reset :
Reset :
{ {
{ - { ..
if (X it (X
got o Reset; GOT(( Reset ) ;
} }
.. { ..
if (V) it (Y)
got o Reset; GOT(( Reset) ;
} }
} }
EXIT_1 GOTQ(Reset);

Release 2007a+
Revision 4.2 vA

118/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2. Link messages

Some examples of link errors are detailed below.

Note Looking at the pre-processed code can help to find errors faster. They are
located in the <<results directory>>/C-ALL/ or <<results directory>>/ALL/SRC/MACROS.
These files have a .ci extension.

Related subjects:
3.2.1. Function: wrong argument type

3.2.2. Function: wrong argument number

3.2.3. Variable: wrong type

3.2.4. Variable: signed/unsigned

3.2.5. Variable: different qualifier

3.2.6. Variable: array against variable

3.2.7. Variable: wrong array size

3.2.8. Missing required prototype for varargs

3.2.9. Can an application without “main” be analysed? (For non Client mode only)

Release 2007a+ 119/546
Revision 4.2 vA



y R HNOLOGIES
Previous Back to table of contents Next

3.2.1. Function: wrong argument type

Pol ySpace out put

\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'f' function has inconpatible type with its definition
declared function type has 'arg 1' type inconpatible with definition
declared 'pointer' (32) type inconpatible with defined 'float' (32) type

int f(float y) int f(int *y);
{
int r; voi d mai n(voi d)
r=12; {
} int r;
r =f(&);
}

Here, the first parameter for the “f” function is either a float or a pointer to an integer — but either way, the global declaration
must match the definition. The error is explained in the textual output generated by PolySpace during the linking phase.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”
section.

Release 2007a+ 120/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.2.2. Function: wrong argument number

Pol ySpace out put

\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'f' function has inconpatible type with its definition
decl ared function type has inconpatible args. nunmber with definition

int f(int y, int z) int f(int y);
d
int r; voi d mai n(voi d)
r=12; {
} int r;
r=1f(r);
}

These two functions haven’t the same number of arguments, which would result in non determinism during execution. The
error is explained in the textual output generated by PolySpace during the linking phase.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”
section.

Release 2007a+ 121/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Back to table of contents Next

Previous

3.2.3. Variable: wrong type

Pol ySpace out put
\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'x' variable has inconmpatible type with its definition
declared 'float' (32) type inconpatible with defined "int' (32) type

extern float x; int Xx;
voi d mai n(voi d)

)

The“x” variable must be declared in the same way in every file. If a variable x is as an integer equal to 1, which is 0x0001,
what does this value mean when seen as a float? It could result in a NAN (Not A Number) during execution.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”

section.

Release 2007a+ 122/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Back to table of contents Next

Previous

3.2.4. Variable: signed/unsigned

Pol ySpace out put
\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'x' variable has inconmpatible type with its definition
decl ared 'unsigned' type inconpatible with defined 'signed type

ext ern unsi gned char x; char x;
voi d mai n(voi d)

)

Consider the 8 bit binary value 10000010. Given that a char is coded in 8 bits, it is not clear how this should be considered in
the code snippet shown; maybe 130 (unsigned), maybe -126 (signed). PolySpace highlights the ambiguity.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”

section.

Release 2007a+ 123/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Back to table of contents Next

Previous

3.2.5. Variable: different qualifier

Pol ySpace out put
\Verifying cross-files ANSI C conpliance ...

\War ni ng: gl obal declaration of 'x' variable has inconpatible type with its definition
declared 'non qualified type inconpatible with defined 'volatile' type

"volatile'" qualifier used

extern int Xx; vol atile int x;

voi d mai n(voi d)

()

The qualifier taken into account by PolySpace is the one with the most onerous implications for the analysis. However, there is
doubt regarding which statement is correct, and so PolySpace generates a warning.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”

section.

Release 2007a+ 124/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.2.6. Variable: array against variable

Pol ySpace out put

\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'x' variable has inconmpatible type with its definition
declared "array' (384) type inconpatible with defined "int' (32) type

extern int x[12]; i nt Xx;

voi d mai n(voi d)

{
}

The real allocated size for the x variable is one integer. Any function attempting to manipulate x[] would corrupt the memory.
PolySpace textual output highlights this error.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”

section.

Release 2007a+ 125/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.2.7. Variable: wrong array size

Pol ySpace out put

\Verifying cross-files ANSI C conpliance ...

Error: global declaration of 'x' variable has inconmpatible type with its definition
decl ared array type has 'upper bound' 12 out of range 5

extern int x[12]; int x[5];
voi d mai n(voi d)
{
}

The real allocated size for the x variable is five integers. Any function attempting to manipulate x[] between x[5] and x[11] will
in fact corrupt the memory. PolySpace textual output highlights this error.

Note If you are considering defining multiple project generic —D options, then using the —include
option may provide a more efficient solution to this type of error. Refer to the “gather compilation options”

section.

Release 2007a+ 126/546

Revision 4.2 vA



y R HNOLOGIES
Previous Back to table of contents

Next

3.2.8. Missing required prototype for varargs

Pol ySpace out put
\Verifying cross-files ANSI C conpliance ...
Error: missing required prototype for varargs. procedure 'Qg'.

voird g(int, ...); vol d mal n(voli d)
{
voi d f(void) 9(4);

{ }
g(12, “abcde”, 40);

}

The prototype for “g” must also be declared when the main is used.

analysis is launched.

To get rid of this error without modifying the main (by adding the line “void g(int, ...
called (say) generic_for example.h and then use the option —include “c:\PolySpace\generic_for example.h” when your

)”"), you can include that line in a new file

Release 2007a+
Revision 4.2 vA

127/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2.9. Can an application without “main” be analysed? (For non
Client mode only)

This paragraph only concerns PolySpace Server. PolySpace Client will automatically generate a main if
needed.

When your application is a function library (API) or a single module, you will have to provide a main that
calls each function because of the execution model that is used by PolySpace. This manual technique
is recommended in preference to the automated approach adopted by Client, because it allows a much
more accurate model of the calling sequence to be generated.

There are three steps involved in manually defining the main.
. Identify the API functions and extract their declaration;

. Create a main to contain the declaration of a volatile variable for each type that is mentioned in
the function prototypes;

. Create a loop with a volatile end condition. Inside this loop, create a switch block with a volatile
condition and, for each API function, create a case branch that calls the function using the
volatile variable parameters created previously.

Alternatively, refer to the “main generator” option section to automatically generate a main.

Consider the following example. Suppose that the API functions are:

int funcl(void *ptr, int Xx);

void func2(int x, int y);

The main to be created manually is as follows:

voi d main()

{

vol atile int random /* W need an integer variable as a function
paraneter */

volatile void * volatile ptr; /* W need a void pointer as a function
paraneter */

while (random {

Release 2007a+ 128/546
Revision 4.2 vA



switch (randonm {
case 1:

random = funcl(ptr, random; break; /* One APl function call */
def aul t:

func2(random random; /* Another APl function call */

Release 2007a+ 129/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.3. Stubbing errors

Related subjects:
3.3.1. Errorswhen compiling polyspace stdstubs.c

3.3.2. Errorswhen creating automatic stubs
3.3.3. How to gather compilations options efficiently
3.3.4. Stubbing

Release 2007a+ 130/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.1. Errors when compiling __polyspace_ _stdstubs.c

Related subjects:
3.3.1.1. Standard error messages

3.3.1.2. Troubleshooting

Release 2007a+ 131/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.1.1. Standard error messages

There may be occasions when a code set compiles on a target but when that same code is analysed with
PolySpace, an error message is generated during the compilation phase for __pol yspace_st dst ubs. c .

Examples of such error messages follow. They highlight conflicts between a standard library function which is
included as part of the application, and one of the standard stubs which is used by PolySpace in place of that
function.

St ubbi ng standard library functions ...

C- STUBS/ __pol yspace__stdstubs.c: 1117: string.h: No such file or directory
Verifying C STUBS/ _ pol yspace__stdstubs.c

C- STUBS/ __pol yspace__stdstubs.c:1118: syntax error; found “strlen' expecting ;'
C- STUBS/ __pol yspace _stdstubs.c:1120: syntax error; found “i' expecting ;'

C- STUBS/ __pol yspace__stdstubs. c: 1120: undeclared identifier "i'

Or

St ubbi ng standard library functions ...
Verifying C STUBS/ __ pol yspace__stdstubs.c
Error: missing required prototype for varargs. procedure 'sprintf’

Or

St ubbi ng standard library functions ...

Verifying C STUBS/ __pol yspace__stdstubs.c

C- STUBS/ __pol yspace__stdstubs. c: 3027: m ssing paraneter 4 type

C- STUBS/ __pol yspace__stdstubs.c:3027: syntax error; found "n' expecting )’
C- STUBS/ __pol yspace__stdstubs. c: 3027: skipping "n'

C- STUBS/ __pol yspace__stdstubs. c: 3037: undeclared identifier "n'”

The code uses standard library functions such as sprintf and strcpy and the examples above suggests problems
with such functions.

Such problems can best be addressed by restarting the analysis including the header file containing the prototype
and the required definitions, as used during compilation on the target. The least invasive way of doing so would
be to use the —I option.

Failing that, a selection of files is provided which contains stubs for most standard library functions which can be
used instead of having them automatically stubbed.

For this to work effectively, it is important for you to include the correct include file for the function. In the
following example, the standard library function is St r | en. This assumes that St ri ng. h has been included.
Because the target st r i ng. h file may be differ between targets ther e are no default include directories for
PolySpace.

So, if the compiler has implicit include files, they must be specified by hand in the verification script, as

Release 2007a+ 132/546
Revision 4.2 vA



illustrated in the following example.
(__polyspace_stdstubs.c is located in <<results_dir>>/C-ALL/C-STUBS)

__polyspace _stdstubs.c

#i f defined(__pol yspace_strlen) || ... || defined(__pol yspace_strt ok)
#i ncl ude <string. h>
size_t strlen(const char *s)
{

size t i=0;

while (s[i] !'= 0)

i ++;
return i;

}

#endif /* _ pol yspace_strlen */

If problems remain, refer to the solutions below.

Release 2007a+ 133/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.3.1.2. Troubleshooting

There may be occasions where restarting the analysis including the missing header file(s) using the —I option will
not solve the problem. There are 3 potential solutions.

1: Whereprecision isimportant and preparation timeisnot a problem.

1. Copy<<results dir>>/C ALL/ CSTUBS/ _ pol yspace_st dst ubs. c to the source
directory and rename it pol yspace_st ubs. c.

2. This file contains the whole list of stubbed functions, user functions and standard library functions.
For example:

#define __ pol yspace_strlen
#define a_user function

3. Find the problem function in the file.

#i f defined(__pol yspace_strlen) || ... || defined(__pol yspace_strt ok)
#i ncl ude <string. h>
size t strlen(const char *s)

{
size t i=0;
while (s[i] !'= 0)
i ++;
return i;

}

#endif /* __ pol yspace_strlen */

This is the stubbed definition for the function causing the problem, and hence the analysis requires the
application’s own string.h include file.

4. EITHER extract the relevant part of that file for inclusion in the analysis.

For instance, for strlen:-

string.h
[l put it in the /homermade_include directory
typedef int size t;
size_t strlen(const char *s);

OR, preferably, provide the string.h file that contains the real prototype and type definitions for the stubbed
function.

5. Specify the path for the include files and re-launch PolySpace

Release 2007a+ 134/546
Revision 4.2 vA



pol yspace-c -1 /honenmade_i ncl ude

or
pol yspace-c -1 /our_target _include _path

2: Where preparation timeisshort or problemsremain after trying solution 1
1. Identify the function name causing the problem (sprintf, say);

2. Ifno prototype for this function can be found, provide a .c file containing the prototype for this
function;

3. Restart the analysis by using a -D option (-D __ polyspace no_sprintf, say)

Other _ polyspace no_function_name options can be found in __ polyspace _stdstubs.c files, such as
__pol yspace_no_vprintf
__polyspace_no_vsprintf
__pol yspace_no _fprintf
__pol yspace_no_f scanf
__pol yspace_no_printf
__pol yspace_no_scanf
__pol yspace_no_sprintf
__pol yspace_no_sscanf
__pol yspace_no_fgetc
__pol yspace_no_fgets
__pol yspace_no_fputc
__pol yspace_no_fputs
__pol yspace_no_getc

Note If you are considering defining multiple project generic —D options, then using
the —include option may provide a more efficient solution to this type of error. Refer to the
“gather compilation options” section.

3: Whereall other attempts havefailed
1. Toignore __pol yspace_st dst ubs. c but still see which standard library functions are in use:
. deactivate all standard stubs using the option -D POLYSPACE NO_STANDARD_ STUBS
. pol yspace-c -D POLYSPACE NO STANDARD STUBS
or

. deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE _STRICT ANSI STANDARD STUBS

. pol yspace-c -D POLYSPACE_STRI CT_ANSI _STANDARD STUBS

This will present a list of functions PolySpace tries to stub, as well as the standard functions in use (most
probably without any prototype). You will have the following type of message:

* Function strcpy may write to its arguments and may return parts of them. Does not model pointer effects.
Returns an initialized value.

Release 2007a+ 135/546
Revision 4.2 vA



Fatal error: function 'strcpy' has unknown prototype

2. Add a “proper” include file in the C file that uses your standard library function. If PolySpace is
restarted with the same options, the default behaviour for these stubs for this particular function will result.

Consider the example si ze_t strcpy(char *s, const char *i)
. Stubbed to write anything in *s
. Stubbed to return any possible size t.

Finally, if the problem remains after trying all 3 solutions, contact PolySpace support.

Release 2007a+ 136/546
Revision 4.2 vA



y E: HNOLOGIES
Previous Back to table of contents Next

3.3.2. Errors when creating automatic stubs

There are three different types of error messages which may be generated during the automatic creation of stubs.

1. Pol ySpace out put

Fatal error: function 'f' refers to a function pointer either nmuch too conpl ex
or in a too-conplex data-structure, or wth unknown paraneters.
It cannot be stubbed automatically.

Consider a prototype f which contains a function pointer as a parameter.

If the function pointer prototype only contains scalars and/or floats then “f”” will be stubbed automatically.

For example, the following function will be stubbed automatically:
int f(

void (*ptr_ok)(int, char, float),

ot her _typel ot her_ paranl);

If this function pointer prototype also contains pointers, the use will get the error message and will have to stub the
“” function manually

For example, the following function will need to be stubbed manually by default (unless the —permissive-stubber
option is used):

int f(

void (*ptr_ok)(int *, char, float),

ot her _typel ot her_parant);

2. Pol ySpace out put
Fatal error: function 'f' has unknown prototype

Error nmessage expl anati on:
"function has wong prototype" neans that either the function has no prototype
or its prototype is not ANSI conpliant.
"task is undefined" means that a function has been declared to be a task but
has no known body

For any function to be automatically stubbed, PolySpace needs the prototype.

Release 2007a+ 137/546
Revision 4.2 vA



3. Pol ySpace out put

*** Verifier found an error in paraneter -entry-points: task "w' mnust be a
userdef function

--- Found some errors in |aunchi ng command. ---
--- Please consult rte-kernel -h to correct them ---
--- and |l aunch the anal ysis again. ---

No function or procedure declared to be an -entry-point can be an automatically stubbed function.

Release 2007a+
Revision 4.2 vA

138/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.3. How to gather compilations options efficiently

The code is often tuned for the target (as discussed to the compiling for a target platform section). Rather than

applying minor changes to the code, create a single pol yspace. h file which will contain all target specific
functions and options. The —include option can then be used to force the inclusion of the polyspace.h file in all

source files under analysis.

Where there are missing prototypes or conflicts in variable definition, writing the expected definition or prototype
within such a header file will yield several advantages.

Direct benefits:

e  The error detection is much faster since it will be detected during compilation rather than in the
link or subsequent phases.

*  The position of the error will be identified more precisely.

e There will be no need to modify original source files.

Indirect benefits:

*  The file is automatically included as the very first file in all original .c files.
e  The file can contain much more powerful macro definitions than simple —D options.
*  The file is reusable for other projects developed under the same environment.

Example

This is an example of a file that can be used with the —include option

/1 The file may include (say) a standard include file inplicitly included
/'l by the cross conpiler

#i ncl ude “stdio.h”

#i ncl ude “another file.h”

/'l Ceneric definitions, reusable fromone project to another
#define far
#defi ne at(x)

/'l A prototype may be positioned here to aid in the solution of a |ink phase
conflict between

/1 declaration and definition. Doing so will allow the detection of the

/1l same error at conpilation tine instead of at link tinme. Leads to

I - earlier detection

I - precise localisation of conflict at conpilation tinme

void f(int);

/'l The sane al so applies to vari abl es.
extern int Xx;

Release 2007a+ 139/546
Revision 4.2 vA



/'l Standard library stubs can be avoi ded,

/1 and OS standard prototypes redefined.
#define __ pol yspace _no_sscanf

#define _ pol yspace no _fgetc

voi d sscanf(int, char, char, char, char, char);
void fgetc(void);

Release 2007a+ 140/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.4. Stubbing

Related subjects:
3.3.4.1. Manual vs. Automatic Stubbing

3.3.4.2. The stubbing options PURE and WORST

3.3.4.3. The default and alter native behaviour for stubbing
3.3.4.4. Function pointer cases

3.3.4.5. Stubbing functions with a variable argument number
3.3.4.6. Finding bugsin  polyspace stdstubs.c

Release 2007a+ 141/546
Revision 4.2 vA



y E: HNOLOGIES
Previous Back to table of contents Next

3.3.4.1. Manual vs. Automatic Stubbing

The adopted approach to stubbing can have a significant influence on the speed and precision of your analysis, and
there are occasions when automatic stubbing will not provide an adequate representation of the code it represents —
with regards to both missing functions and assembly instructions.

Deciding which stub functions to provide

In the following paragraph, procedure_to_stub can represent either procedure or a sequence of assembly instructions
which would be automatically stubbed in the absence of a manual stub. (Please refer to the assembly code section).

Stubs do not need to model the details of the functions or procedures involved. They only need to represent the effect
that the code might have on the remainder of the system.

Consider procedure_to_stub, If it represents:

. Atiming constraint (such as a timer set/reset, a task activation, a delay, or a counter of ticks between two
precise locations in the code) then you can stub it to an empty action (void procedure(void)). PolySpace needs
no concept of timing since it takes into account all possible scheduling and interleaving of concurrent execution.
There is therefore no need to stub functions that set or reset a timer. Simply declare the variable representing
time as volatile.

« An I/O access: maybe to a hardware port, a sensor, a read/write of a file, a read of an EEPROM, or a write to a
volatile variable.There is no need to stub a write access. If you wish to do so, simply stub a write access to an
empty action (void procedure(void)). Stub read accesses to "read all possible values (volatile)".

« A write to a global variable. In this case, you may need to consider which procedures or functions write to it and
why. Do not stub the concerned procedure_to_stub if:

o The variable is volatile;

o The variable is a task list. Such lists are accounted for by default because all tasks declared with the -
task option are automatically modelled as though they have been started. Write a procedure_to_stub by
hand if

o The variable is a regular variable read by other procedures or functions.

o Aread from a global variable: If you want PolySpace to detect that it is a shared variable, you need to
stub a read access. This is easily achieved by copying the value into a local variable.

In general, follow the Data Flow and remember that:
« PolySpace only cares about the C code which is provided,;
« PolySpace need not be informed of timing constraints because all possible sequencing is taken into account;
= You can refer to execution hypotheses made by PolySpace for a complete list of constraints.

Example

The following example shows a header for a missing function (which might occur, for example, if the code is a subset
of a project.) The missing function copies the value of the ‘src’ parameter to ‘dest’ so there would be a division by zero
— aruntime error - at run time.

voi d mai n(voi d)

Release 2007a+ 142/546
Revision 4.2 vA



S

R0 oPR

oo ow
ng uon

ing_function(&a, b);
/I a,;
}

By relying on Verifier’s default stub, the division is shown with an orange warning because ‘a’ is assumed to be
anywhere in the full permissible integer range (including 0). If the function was commented out, then the division would
be agreen"/". Ared "/ " could only be achieved with a manual stub.

Default Stubbing

Manual Stubbing

Function ignored

vol d mal n(vol d)

{
a = 1;
b = 0;
a_m ssing_function(&a,
b) ;
b=1 a;
/
}

vol d a_m ssi ng_function
(int *x, int y;)

{ *x =y }
voi d mai n(voi d)
{
a =1,
b =0;
a_m ssing function(&a,
b) ;

b =1/ a
/ red division

vol d a_m ssing_function
(int *x, int y;)

{ }
voi d mai n(voi d)
{
a = 1,
b = 0;
a_m ssing function(&a,
b) ;
b =1/ a;

/[ green division

By relying on Verifier's default stub, the assembly code is ignored and the division " /" is green. The red division "/"
could only be achieved with a manual stub.

Summary

Stub manually: to gain precision by restricting return values generated by automatic stubs; to deal with a function

which writes to global variables.

Stub automatically in the knowledge that no run time error will be ever introduced by automatic stubbing; to minimize

preparation time.

Release 2007a+
Revision 4.2 vA

143/546



Previous

PonSpace

TECHHNOLOGIES

Back to table of contents

Next

3.3.4.2. The stubbing options PURE and WORST

External functions are assumed to have no effect (read, write) on global variables. Every external function for which these
assumptions are not valid will need to be explicitly stubbed.

Stubbing has an effect on analysis duration (Reducing analysis time) and precision.

Consider the example i nt f (char *);
may be considered, aside from manual stubbing.

Using this
approach...

pragma POLYSPACE_WORST

pragma POLYSPACE_PURE

In the analysis of this function there are three automatic stubbing approaches which

Default automatic stubbing

...implies the
assumption of
this worst
case scenario
in the stub...

int f(char *x)

{
strcpy(x, "the quick

brown fox, etc.");
return & x[2]);

}

int f(char *x)

{
}

return strlen(x);

int f(char *x)

{
*X = rand();
return O;

...and then
there is
manual
stubbing to
consider.

[f the function being modelled by the stub is not accurately represented by any of these approaches to automatic
stubbing, then manual stubbing will yield more precise results.

Release 2007a+
Revision 4.2 vA

144/546



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

3.3.4.3. The default and alternative behaviour for stubbing

initial prototype

\With pragma
POLY SPACE_PURE

\With pragma PolySpace default
POLYSPACE_WORST automatic stubbing

{ do nothing }

(void (*ptr)(int),

par ani)

void f1(void);
int f£2 Returns [-2"31, 2°31-1] Returns [-2"31, 2731-1] and
. assumes the ability to write into Returns [-2°31, 2/31-1]
(int u); (int *) u
int f3 Assumes the ability to write into *u
. to any depth and returns [-2731,
(int *u); 2731-1]
1 %
e fa Returns an absolute address [Returns AA or .(1.nt Ju a.nd. Returns an absolute address (refer to
(AA) assumes the ability to write into . .
. (int *) u Understanding addressing and
(int u); pointers)
) Returns an absolute address [Returns [-2731, 2”31-1] and . o
int* f5 - o Assumes the ability to write into *u,
assumes the ability to write into
_ *u, to any depth to any depth and returns an absolute
(int *u); ’ address
void f6 Does nothing The function pointed to by ptr will be called with a full-range random

void f7

(void (*ptr)(int *),
par ang)

value for the integer. Rules for param?2 are as above.

Unless the option —permissive-stubber, is used, this function is not
stubbed. The parameter (int *) associated with the function pointer is
too complicated for PolySpace to stub it, and PolySpace stops. You
must stub this function manually.

Note If (*ptr) contains a pointer as a parameter, it won’t be
stubbed automatically and with —permissive-stubber , the function

pointer ptr is called with random as a parameter.

Release 2007a+
Revision 4.2 vA

1145/546



y Egzunumm ES
Previous Back to table of contents Next

3.3.4.4. Function pointer cases

Function prototype Comments

int f(

void (*ptr_ok)(int, char, float),
ot her _typel ot her_parantl);
int f(

void (*ptr_ok)(int *, char,
ot her _typel ot her_paraml);

vold _reg(int);
int _seq(void *); Both functions “_reg” and “_seq” are automatically stubbed, but the call to the “bar” function

is not exercised by PolySpace.

The —permissive-stubber option is not required.

float), The —permissive-stubber option is required because of the “int *” parameter of the function
pointer passed as an argument

unsi gned char bar (voi d) {

return 0 The function that is a parameter is only called in stubbed functions if the stubbed function

prototype contains a function pointer as parameter.

}

voi d mai n(voi d){
unsi gned char x=0;
_reg(_seq(bar));

Since here that is a “void *”, it’s not a function pointer

Release 2007a+ 146/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.4.5. Stubbing functions with a variable argument number

PolySpace is capable of stubbing most vararg functions. Nevertheless,

*  This can generate imprecision in pointer analysis;
* It causes a significant increase in complexity and hence in analysis time.

There are two possible ways to deal with this.

e  stub manually, or
e puta#pragma POLYSPACE PURE "function 1" on every varargs function that you know to
be pure. This can reduce the complexity of pointer analysis tenfold.

Consider the following example.

Place this kind of line in any .c or .h file of the analysis:

#i f def POLYSPACE
#defi ne exanpl e_of _function(format, args...)

#el se
voi d exanpl e_of function(char * format, ...)
#endi f
voi d mai n(voi d)
{
int i = 3;
exanpl e_of function("testl %", i);
}

polyspace-c -D POLYSPACE

Release 2007a+ 147/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.3.4.6. Finding bugs in __polyspace__stdstubs.c

By doing a selective review of oranges, the user can sometimes find bugs located inthe __ polyspace _stdstubs.c
file. Asfor other oranges in the code, some are useless, others highlight real problems. How can we isolate the
useful ones?

There are anumber of practical waysto make it easy for the user to detect the useful oranges:

»  Create the file using approaches with are sympathetic to PolySpace needs. Thiswill yield up to
90% less useless oranges. For instance,

*  Usefunctions that return random values instead of local volatile variables;
* Initialise char variables with arandom char instead of avolatileint in order to reduce the
number of overflow checks,
» Definean"APPLY_CONSTRAINT()" macro. Such afunction will always create an
orange check but it will be easy to filter.
» By checking oranges manually inthe __polyspace _stdstubs.c file: many comments have been
added to explain where an orange is expected and why.

Collectively, these features turn the chore of separating out the useful orange warnings into a fast
and painless activity.

The user should start by reading IDP checks.

Example

The orange check in fgets() is one such check.

for (i=0; i <length; i++) /* wite in s up to n-1 char */
s[i] = _polyspace_random char();
| DP

This orange check is definitely a significant one. It means that Verifier could not conclude that the buffer which is
given as an argument to fgets() is always big enough to contain the specified character count. So, the severity of
the problem highlighted depends on how the function is called in the application.

The check shouldn't generally be orange unlessit is highlighting areal issue (unless fgets() is called very
frequently. In that case, try using the context-sensitivity or -inline options).

Release 2007a+ 148/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.4. Intermediate language errors

The analysis log can sometimes indicate that a red error has been detected in the previous phase, and that the
analysis has therefore stopped. If no graphical result is provided, the errors and their locations are listed at the end
of the log file. To find them, you can scroll through the analysis log file starting at the end and working
backwards.

Note This example only explains where to find the error list. Their meaning and the
error messages themselves are detailed in the next section.

The log file may be similar to this one:

***x% Cto intermedi ate | anguage translation 13.29 (P_SENUP) took 0.000773real,
0. 000773u + 0. 0s

1 User Program Errors:

* certain failure of correctness condition [non-initialized variable]"&
" file intermediate.c line 5 colum 0

Pl ease correct the programand restart the verifier.

*****x Cto intermedi ate | anguage translation 13.30 (IL Partition)

0 enpty package(s) renoved

***x* Cto internmedi ate | anguage translation 13.30 (IL Partition) took 0.002252real,
0. 002252u + 0. 0s

**** Cto internediate | anguage translation 13 (P_IL) took 1.069168real, 1.069168u
+ 0. Os

0 enpty package(s) renoved

**** Cto internediate | anguage translation 14 (P_IPF)

96% i nit procedures renoved

**** Cto internedi ate | anguage translation 14 (P_IPF) took 0.002401lreal, 0.002401u
+ 0. O0s

* terminating ../il-sources/a0. ads

* terminating ../il-sources/a0. adb

**** Cto internedi ate | anguage translation 15 (P_TW

**** Cto internediate | anguage translation 15 (P_TW took 0.003055real, 0.003055u
+ 0. 0s

* assigns: 100% reduction

* asserts: 100% reduction

* total : 54%reduction

User tinme for command "iabc-c2if -input-file': 17 seconds on host parisl2

LSRR S Sk S Sk S Sk S S S kS Rk Sk S kS S

* k%

*** Cto internmedi ate | anguage transl ati on done

* % %

Release 2007a+ 149/546
Revision 4.2 vA



LR I S b S b b b S S R R S I b S S Sk S b I b S Rk b b I S

Ending at: Cct 31, 2002 14:29:26

Certain (red) errors detected during previous phase.
You nust correct them before continuing.

Release 2007a+ 150/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.5. Advanced setup

Related subjects:
3.5.1. Variables— Declaration and definition

3.5.2. Types promotion
3.5.3. Code preparation
3.5.4. My code is multitasking

Release 2007a+ 151/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.5.1. Variables — Declaration and definition

The definition and declaration of a variable are two discrete but related operations which are frequently confused.

Declaration

»  for a function, the prototype : i nt f (voi d);
. for an external variable : extern i nt X;

A declaration provides information about the type of the function or variable. If the function or variable is used in
a file where it has not been declared, a compilation error will result.

Definition
e  for a function : the body of the function has been written : i nt f(void) { return 0; }

e  for a variable : a part of memory has been reserved for the variable : i nt Xx; or extern
i nt x=0;

When a variable is not defined, the - al | ow undef - vari abl e is required to start the analysis. Where that

option is used, PolySpace will consider the variable to be initialised, and to potentially take any value in its full
range (see PolySpace and variables initialisation section).

When a function is not defined, it is stubbed automatically.

Release 2007a+ 152/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.2. Types promotion

Related subjects:
3.5.2.1. An example of an unsigned promoted to signed

3.5.2.2. What arethe promotionsrulesin operators?
3.5.2.3. Example

Release 2007a+ 153/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.5.2.1. An example of an unsigned promoted to signed
It is important to understand the circumstances under which signed integers are promoted to unsigned.

For example, the execution of the following piece of code would produce an assertion failure and a core dump.

#i ncl ude <assert. h>
int main(void) {
int x = -2;
unsigned int y = 5;
assert(x <=y);

}

Consider the range of possible values (interval) of x in this second example. Again, this code would cause
assertion failure:

volatile int random
unsigned int y = 7;

int X = random

assert ( x >= -7 && x <=y );

However, given that the interval range of x after the second assertion is not [ -7 .. 7], but rather [ 0 .. 7], the
following assertion would hold true.

assert (x>=0 && x<=7);
Implicit promotion explains thisbehaviour.

In fact, in the second example x <=y is implicitly:
((unsigned int) x) <=y /* inplicit pronotion because y is unsigned */

A negative cast into unsigned gives a big value, which has to be bigger that 7. And this big value can never be <=
7, and so the assertion can never hold true.

Release 2007a+ 154/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.2.2. What are the promotions rules in operators?

Knowledge of the rules applying to the standard operators of the C language will help you to analyse those
and red checks which relate to overflows on type operations. Those rules are:

*  Unary operators operate on the type of the operand;

*  Shifts operate on the type of the left operand,

*  Boolean operators operate on Booleans;

e Other binary operators operate on a common type. If the types of the 2 operands are different, they are
promoted to the first common type which can represent both of them.

So

*  Be careful of constant types (refer to The type of constants and constant overflows section);

*  Be careful when analysing any operation between variables of different types without an explicit cast.

Release 2007a+ 155/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.5.2.3. Example

Consider the integral promotion aspect of the ANSI-C standard (see § 6.2.1 in ISO/IEC 9899:1990). On arithmetic operators like +, -,
* % and /, an integral promotion is applied on both operands. From the PolySpace viewpoint, that can imply an OVFL or a UNFL

check.
2 extern char random char (voi d);
3 extern int random.int(void);
4
5 voi d nmai n(voi d)
6 {
7 char cl = random char();
8 char c2 = random char();
9 int i1 =randomint();
10 int 12 = randomint();
11
12 il =11 i 2; /'l A typical OVFL/UNFL on a + operator
13 =cl + cz; /1 An OVFL/UNFL warning on the cl assignment [fromint32 to int8]
14 }

Unlike the addition of two integers at line 12, an implicit promotion is used in the addition of the two chars at line 13. Consider this
second “equivalence” example.

2 extern char random char(void);

3

4 voi d mai n(voi d)

5 {

6 char cl1 = random char();

7 char c2 = random char ();

8

9 cl = (char)((int)cl + (int)c2); [/ Warning UOVFL: due to integral pronotion
10 }

An orange check represents a warning of a potential overflow (OVFL), generated on the (char) cast [from int32 to int8]. A green
check represents a verification that there is no possibility of any overflow (OVFL) on the + operator.

In general, integral promotion requires that the abstract machine should promote the type of each variable to the integral target size
before realizing the arithmetic operation and subsequently adjusting the assignment type. See the equivalence example of a simple
addition of two char (above).

Integral promotion respects the size hierarchy of basic types:
. char (signed or not) and signed short are promoted to int.

. unsigned short is promoted to int only if int can represent all the possible values of an unsigned short. If that is not the case
(perhaps because of a 16-bit target, for example) then unsigned short is promoted to unsigned int.

. Other types like (un)signed int, (un)signed long int and (un)signed long long int promote themselves.

Release 2007a+ 156/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.3. Code preparation

Related subjects:
3.5.3.1. Variables

3.5.3.2. Built-in functions

Release 2007a+ 157/546
Revision 4.2 vA



y E{ HHOLOGIES
Previous Back to table of contents Next

3.5.3.1. Variables

Related subjects:
3.5.3.1.1. How can | assign rangesto variables/assert?
3.5.3.1.2. Checking properties on global variables at any point: Global assert
3.5.3.1.3. How can | model variable values external to my application?
3.5.3.1.4. How arevariablesinitialised?

Release 2007a+ 158/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.5.3.1.1. How can | assign rangesto variables/assert?

Abstract

How can I use assert in PolySpace?

Explanation

Assert is a UNIX/linux/windows macro that aborts the program if the test performed inside the assertion proves to
be false.

Assert failures are real RTEs because they lead to a processor halt. Because of this, Verifier will produce checks
for them. The behaviour matches that exhibited during execution, because all execution pathsfor unsatisfied
conditionsaretruncated (red and then grey). Thus it can be assumed that any analysis performed downstream of
the assert uses value ranges which satisfy the assert conditions.

Also refer to the use of volatile.

Solution

Assert can be used to constrain input variables to values within a particular range, for example:

#i nclude <stdlib. h>
int return_betweens_bounds(int mn, int max)
{
int ret; /1l ret is not initialized
ret = randon(); // ret ~ [-2731, 2731-1]
((mMn<=ret) && (ret<=max));
/]l assert is because the condition may or may not be fulfilled
/[l ret ~[mn, max] here because all execution paths that don't
/1 meet the condition are stopped
return ret;

Release 2007a+ 159/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.5.3.1.2. Checking properties on global variables at any point: Global assert

The global assert mechanism works by inserting a check on each write access to a global variable to ensure it is
the range specified.
In order to use this feature you need to firstly include the file "pst _gassert. h", then create a list

Pst _d obal _Assert statements for the variables you are interested in.
This header is located in <Pol ySpacel nstal | Di r >/ ci ncl ude folder.

The Pst _d obal _Assert statement takes the form: Pst _d obal _Assert(identifier, test);
Where i denti fi er has to be a unique reference for each global assert statement, and t est is the logical test to
perform on a variable. For example:

#i ncl ude "pst_gassert.h"
int x;

Pst _d obal _Assert (1, x>=0);

voi d mai n(voi d)

{ x=12; /1l green global assert check on the variable x
x=0; /1 green gl obal assert check on the variable x
x=-1; /'l red global assert check on the variable x

}

and associated results, using PolySpace Viewer:

Ew.c = [=] E3
1 #include "p=t gassert.h”

z
3 int

4

5 ! 1 L,

&

-

g8

9 vold main(veld)

n o | DT 2o
11 ¥ = L

12 w =0; in "to.c" line 13 column 2
13 B = -19; [Source code :

14 \ = | ¥ = =1&;

I A

certain failure of global assexrtion condition [Pst Global Assext 1] (vaxiable '=')

The behaviour of a global assertion is as follows:

Release 2007a+ 160/546
Revision 4.2 vA



8 It defines the properties of global variables;
§ Ateach new write access to a variable which had been the subject of a global assertion,
PolySpace uses an extra check to indicate whether the global assert is true or not.

For your case you can create a header file with extern references to the global variables of interest followed by the
global assert statements.
Then, use the tools -include option to force inclusion of this file into every c file. e.g. "pol yspace. h":

#i fndef _POLYSPACE_H_
#define POLYSPACE H_

#i ncl ude "pst_gassert.h"

extern int x;

extern int vy;

Pst _d obal _Assert (1, x>=0);

Pst _d obal Assert (2, ((y>=0) && (y<100)));

#endif /* POLYSPACE H */

The other activity you may want to do is to initialize the variables at the start of
execution to these val ues.

To do this you will need to create a hook into the applications main that you are
anal yzi ng or use —dat a-range-specifications option.

launching command
pol yspace-c -include "pol yspace. h"
Variables scope

Variables concern external linkage, const variables and not necessary a defined variable (i.e. could be extern with
option -allow-undef-variables). Static variables are not concerned by this option.

The scalar type allows all modes: Variables of integral type signed or unsigned allow any mode (char, short, int,
long and long long). It allows also structure fields and arrays cells (of integral type).

Pst _d obal _Assert (1, x > 0);
Pst _d obal Assert(2, x < x1);
Pst _d obal Assert(3, x1 > 0 &% x1 < 128);

Pst _d obal _Assert(4, (s.b & Ox7f) == s.b);
Pst _d obal Assert(5, tab[1]!= 0);

Limitationsand fatal errors
The feature does not work for pointers, floats (f | oat, doubl e and | ong doubl e) and struct/union variable:

extern int *p;

extern float f_var;

extern voi d changel(void);

Pst _d obal Assert(6, *p < 300);

Pst _d obal Assert(7, (changel(), 1 ==1));
Pst _d obal _Assert (8, ((x = x + 3) > 10));
Pst _d obal _Assert (9, x ++ < 100);

Pst _d obal _Assert (10, f_var < 10.0f);

Release 2007a+ 161/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.3.1.3. How can | model variable values external to my
application?

There are three main considerations.

*  Usage of volatile variable;
*  Express that the variable content can change at every new read access;
*  Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect following axiom:
"if I write a value V in the variable X, and if I read X's value before any other writing to X occurs, I will get V."

Thus the value of a volatile variable is "unknown". It can be any value that can be represented by a variable of its
type, and that value can change at any time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because the value may have changed
between one read access and the next.

Note that although the volatile characteristic of a variable is also commonly used by programmers to avoid
compiler optimisation, this characteristic has no consequence for PolySpace.

int return_random voi d)

{
volatile int random /1l random ~ [-2731, 2731-1], although
/1
Int vy,
y =1 1 [/ because
/'l random ~ [-2731, 2731-1]
random = 100;
y =1 | I because
/1l random ~ [-2731, 2731-1]
return random /'l random ~ [-2731, 2731-1]
}
Release 2007a+ 162/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.3.1.4. How are variablesinitialised?

Consider external, volatile and absolute address variable in the following examples.

Extern

PolySpace works on the principle that a global or static extern variable could take any value within the range of
its type.

extern int x;

int y;

y =1 x; I/ because x ~ [-2731, 2731-1]

y =1/ x; /Il green because x ~ [-2"31 -1] U1, 2731-1]

Refer to “Reviewing code coloured by PolySpace ” for more information on colour propagation.

For extern structures containing field(s) of type “pointer to function”, this principle leads to red errors in the
viewer. In this case, the resulting default behaviour is that these pointers don’t point to any valid function. For
results to be meaningful here, you may well need to define these variables explicitly.

Volatile
volatile int x; [/ x ~ [-2731, 2731-1], although x has not been
initialised

* ifxisa global variable, the NIV is green

e ifxisa , the NIV is always orange

Absolute addressing

The content of an absolute address is always considered to be potentially uninitialised ( ):
e #define X (* ((int *)0x20000))
«  X=100;

e y=1/X; /NIVonXis
* int *p = (int *)0x20000;

e *p=100;

e y=1/*p;//NIVon*pis

Release 2007a+ 163/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.5.3.2. Built-in functions

PolySpace stubs all functions which are not defined within the analysis. Polyspace provides for all the
functions defined in the standard libc an accurate stub taking into account functional aspect of the

function.

All theses functions are declared in the standard list of headers and can be redefined using its own
definition by invalidating the associated set of functions:

» Using -D POLYSPACE NO STANDARD STUBS for all functions declared in Standard ANSI
headers: assert. h, ctype.h, errno.h, locale.h, math.h, setjnp.h(setjnp'
and 'l ongj np' functions are partially implemented — see <pol yspacePr oduct >/ ci ncl ude/
__pol yspace__stdstubs. c),signal.h('signal'and'rai se'functions are partially
implemented — see <pol yspacePr oduct >/ ci ncl ude/ __pol yspace__stdstubs. c),
stdio.h, stdarg.h, stdlib.h, string.h, andtine. h.

 Using -D POLYSPACE STRI CT_ANSI STANDARD_ STUBS for functions only declared in
strings. h, unistd.h,andfcntl. h.

Most of the time theses functions can be redefined and analysed by PolySpace by invalidating the
associated set of functions or only the specific function using—D __pol yspace_no_<functi on

name>. For example, If you want to redefine the f abs() function, you need to add the —D
__pol yspace_no_f abs directive and add the code of your own f abs() function in a PolySpace

analysis.

There are five exceptions to theses rules The following functions which deal with memory allocation
can not be redefined: mal 1 oc(), calloc(), realloc(), valloc(), alloca(),
__built in mlloc() and __built _in_alloca().

Release 2007a+ 164/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.5.4. My code is multitasking

We strongly recommend to read the different section contained here before applying
the rules described below. Some rules are mandatory; some rules allow the user to
gain selectivity.

The following describes the default behavior of PolySpace Verifier. If the code to be

analyzed does not conform to these assumptions, then some minor modifications to
the code will be required.

1. The main procedure must terminate in order for entry-points (or tasks) to start.

2. All tasks or entry-points start after the end of the main without any predefined

basis regarding: the sequence, priority or preemption. If an entry-point is seen
has dead code, it is because the main contains a red error and therefore does
not terminate.

PolySpace Verifier considers that there is no atomicity, nor timing constraints.

At last, only entry point with voi d any _nane (voi d) as prototype will be
considered

Related subjects:
3.5.4.1. Modelling tasks,interruptions and events
3.5.4.2. Shared variables
3.5.4.3. Miscellaneous

Release 2007a+ 165/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.1. Modelling tasks,interruptions and events

Related subjects:
3.5.4.1.1. Modelling synchronoustasks

3.5.4.1.2. Interruptions and asynchronous events/tasks/threads
3.5.4.1.3. Areinterruptions maskable or preemptive by default?

Release 2007a+ 166/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.1.1. Modelling synchronous tasks

It will sometimes be necessary to adapt the source code, to allow synchronous tasks to be taken into account.

Suppose that an application has the following behaviour:

*  Once every 10 ms: void tsk _10ms(void);
*  Once every 30 ms: ...
*  Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and always return control to the calling
context. For example,

void tsk 10nms(voi d)
{ do_things_and exit();
[* it's inportant it returns control*/

}

Now, if each entry-point was to be specified at Verifier launch by using the option
pol yspace-c -entry-points tsk 10nms,tsk 30ns,tsk 50ns

then the results would NOT be valid, because each task would only be called once.

To address this problem, PolySpace Verifier needs to be informed that the tasks are purely sequential - that is, that
they are functions to be called in a deterministic order. This can be achieved by writing a function to call each of
the tasks in the correct sequence, and then declaring this new function as a single task entry point.

Solution 1

Write a function that calls the cyclic tasks in the right order: this is an exact sequencer. This sequencer is then
specified at Verifier launch time as a single task entry point. This solution:

* iSvery precise
*  requires knowledge of the exact sequence of events.

For example, the sequencer might be:

voi d one_sequential C function(void)
{
while (1) {
tsk_10ns();
tsk _10ns();
tsk_10ns();

Release 2007a+ 167/546
Revision 4.2 vA



tsk _30ns ();
tsk_10ns();
tsk _10ns();
tsk _50nms ();
}
}

and the associated launching command:
pol yspace-c -entry-points one_sequential C function

Solution 2

Make an upper approximation sequencer, taking into account every possible scheduling. This solution:

* isless precise;
* isquick to code, especially for complicated scheduling

For example, the sequencer might be:
voi d upper _approx_C sequencer (voi d)

{
volatile int random
while (1) {
if (random tsk_10ns();
if (random tsk 30ms();
if (random tsk_50ns();
if (random tsk 100ms();
}
}

and the associated launching command:
pol yspace-c -entry-points upper_approx_C sequencer

Note that if this is the only entry-point, then it can be added at the end of the main rather than specified as a task
entry point.

Release 2007a+ 168/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

3.5.4.1.2. Interruptions and asynchronous events/tasks/threads

Source code may be adapted to allow asynchronous tasks and interruptions to be taken into account;
for example:
void interrupt isr_1(void)

(...

Without such adaptations, interrupt service routines will appear as grey (dead code) in the Viewer. The
grey code indicates that this code is not executed and is not taken into account, and so all interruptions
and tasks are ignored by PolySpace Verifier.

The standard execution model is such that the main is executed initially. Only if the main terminates
and returns control (i.e. if it is not an infinite loop and has no red errors) will the entry points be started,
with all potential starting sequences being modelled automatically. There are several different
approaches which may be adopted to implement the required adaptations.

Solution 1: Whereinterrupts (1SRs) CANNOT pre-empt each other

If these 3 following conditions are fulfilled:

» the interrupt functions it_1 and it_2 (say) can never interrupt each other;
. each interrupt can be raised several times, at any time;
e they are returning functions, and not infinite loops.

Then these non pre-emptive interruptions may be grouped into a single function, and that function
declared as a entry point.

void it_1(void);

void it_2(void);

void all interruptions and events(void)
{ while (1) {

if (random()) it_1();

if (random()) it_2();

}
}
The associated launching command would be:
pol yspace-c -entry-points all __interruptions_and_events

Solution 2: Whereinterrupts CAN pre-empt each other

If two ISRs can be each be interrupted by the other, then:

* encapsulate each of them in a loop
» declare each loop as a entry point.
One way of approaching that is to replace the original file with a PolySpace version, as illustrated

Release 2007a+ 169/546
Revision 4.2 vA



below.

original_file.c
void it_1(void)

{
return;
}
void it_2(void)
{
return;
}
voi d one_t ask(void)
{
... return;
}
polyspace.c
void polys it _1(void)
{
while (1)
if (random())
it_1();
}
void polys_ it _2(void)
{
while (1)
if (random())
it_2();
}
voi d pol ys_one_t ask(voi d)
{
while (1)
if (randon())
one_t ask();
}

The associated launching command would be

pol yspace-c -entry-points polys_it_1,polys_it_2, polys_one_task

Release 2007a+
Revision 4.2 vA

170/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.1.3. Areinterruptions maskable or preemptive by default?
For user interruptions, no implicit critical section is defined: they all need to be written by hand.

Sometimes, an application which includes interrupts has a critical section written into its main entry point, but
shared data is still flagged as unprotected.

This occurs because PolySpace Verifier does not distinguish between interrupt service routines and tasks. If you
specify an interrupt to be a "-entry-point" entry point, it will have the same priority level as the other procedures
declared as tasks ("-entry-points" option). So, because PolySpace Verifier makes an upper approximation of all
scheduling and all interleaving, in this case that includes the possibility that the | SR might beinterrupted by
any other task. There are more paths modelled than could happen during execution, but this has no adverse
effect on of the results obtained except that more scenarios are considered than could happen during “real life”
execution — and the shared data is not seen as being protected.

To address this, the interrupt needs to be embedded in a specific procedure that uses the same critical section as
the one used in the main task. Then, each time this function is called, the task will enter a critical section which
will model the behaviour of a non-maskable interruption.

Original files

void nmy_mai n_task(voi d)

{
MASK | T;
shared x = 12;
UVASK | T;

}

int shared x ;

void interrupt my_real _it(void)
{ /* which is by specification unmaskabl e */
shared x = 100;

}

Additional C files required by Verifier

#define MASK I T pst_mask_it()
#define UMASK I T pst_umask _it()
voi d ot her task (void)

{

Release 2007a+ 171/546
Revision 4.2 vA



MASK | T;
nmy real it();
UVASK | T;

}

The associated launching command:-

pol yspace-c \
-Dinterrupt=\
-entry-points ny_mai n_task, ot her task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unnmask it:table"

Release 2007a+ 172/546
Revision 4.2 vA



y Qﬁ HHOLOGIES
Previous Back to table of contents Next

3.5.4.2. Shared variables

When PolySpace Verifier is launched without any options, all tasks are examined as though concurrent and with
no assumptions about priorities, sequence order, or timing. Shared variables in this context will always be
considered unprotected, and so will all be shown as in the variable dictionary.
The following mechanisms can be used to protect the variables:

*  two explicit protection mechanisms (critical section and mutual exclusion);

*  implicit protection (access pattern).

See details below.

Related subjects:
3.5.4.2.1. Differences between dictionary and concurrent access graph

3.5.4.2.2. Critical sections
3.5.4.2.3. Mutual exclusion
3.5.4.2.4. Access pattern
3.5.4.2.5. Semaphor es

Release 2007a+ 173/546
Revision 4.2 vA



PonSQggg

Previous Back to table of contents Next

3.5.4.2.1. Differences between dictionary and concurrent access graph

This section explains how the dictionary works, and how it differs to the concurrent access graph.
Consider the following code, which contains 3 tasks

I nt *ptr; vol d taskl(vol d) vol d task2(vol d) vol d task3(vol d)
int a; { { {
i nt b; a++; a = a + 10; ptr = &b;
} t “ptr = 0;
voi d mai n(voi d) }

{

ptr = &a;

}

The variable “pt r 7 is a simple pointer. pt r itself is not a shared variable because it is only accessed by the mai n and
t ask3. We can confirm this diagnostic by checking the dictionary which lists

Writes accesses in the main and int ask3
Read access in task3

But it appears as shared in the dictionary because the concurrent access graph also gathers information regarding the
variable “a”, which it points to. This highlights the difference between the dictionary and the concurrent access graph for
pointer variables — the concurrent access graph includes both

Read/write accesses to the pointer itself (ptr in the example below), and
Read/write accesses to the variable pointed to (a in the example)

B Concurrent a... |T]@[§|
— — 4 Variables
sourel.c =3 New_Project =
£3 '
sourel.c +-so0urel b
taska Eees;;l L _
SIHEEL ptr iWtitten by 4 4 sourel _init_globals
== Paad by » 4 sourel main
taskl Suu.r..fl' ¢ [Wittan by task 4 4 sourel taska
write
gy L Fiead by task I b sourel task3
= prr O ALY PRTEAD BN 4|| soure1 task2
bl sy Ruwd by 1| soure task3
Leskd 4| soure1 taskl
|I» soure task2
|I» soure taskd il
|I» soure taskl |
Kil——1 af

Release 2007a+ 174/546

Revision 4.2 vA



PonSpace

Previous

TECHHNOLOGIES
Back to table of contents Next

3.5.4.2.2. Critical sections

This is the most common protection mechanism found in applications, and is simple to represent in PolySpace

Verifier:;

* if one entry-point makes a call to a particular critical section, all other entry-points will be blocked on
the "critical-section-begin" function call until the originating entry-point calls the "critical-section-end"

function,

¢ this does not mean the code between two critical sections is atomic;
e  itis a binary semaphore, so there is only one token per label (CS1 in the example below). Unlike many
implementations of semaphores, it is not a decrementing counter that can keep track of a number of

attempted accesses.

Consider the following example.

Original code

voi d procl(void)
{
MASK | T;
x =12; // X is protected
y = 100;
UVASK | T;
}

voi d proc2(voi d)
{
MASK | T;
x =11; [// X is protected
UVASK I T;
y = 101,
}

Filereplacing the original includefile
voi d begi n_cs(void);

void end _cs(void);

#define MASK I T begin_cs()
#define UMASK I T end cs()

Command lineto launch PolySpace Verifier

pol yspace-c \
-entry-point procl, proc2 \

Release 2007a+
Revision 4.2 vA

175/546



-critical -section-begin "begin cs:|abel 1" \
-critical -section-end "end cs:|abel _1"

Release 2007a+ 176/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.2.3. Mutual exclusion

Mutual exclusion between tasks or interrupts can be implemented while preparing PolySpace Verifier for launch
setting.

Suppose there are entry-points which never overlap each other, and that variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you may want PolySpace Verifier to take
this into account. Consider the following example.

These entry-points cannot overlap:

. tl and t3
. t2,t3 and t4

These entry-points can overlap:

. tl and t2
. tl and t4

Before launching Verifier, the names of mutually exclusive entry-points are placed on a single line

pol yspace-c -tenporal -exclusion-file nyExclusions.txt -entry-points tl1,t2,
t3,t4

The myExclusions.txt is also required in the current directory. This will contain:

tl1t3
t2 t3 t4

Release 2007a+ 177/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.2.4. Access pattern

If a variable is a structure, then provided the same fields aren’t being accessed, by its nature the variable is
protected even if different tasks are accessing it. In PolySpace, this is regarded as protection by “access pattern”
which will be shown in the Shared Variables section of the Viewer.

Consider the following example.

If a variable x, is a structure containing two fields, A and B, and

*  task 1 only reads/writes field A
* task 2 only reads/writes field B

Then x is shown as being protected by access pattern in PolySpace Viewer.

Release 2007a+ 178/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.2.5. Semaphores

Although it is possible to implement in ¢, it is not possible to take into account a semaphore system call in
PolySpace Verifier. Nevertheless, Critical sections may be used to model the behaviour.

Release 2007a+ 179/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.3. Miscellaneous

Related subjects:
3.5.4.3.1. Mailboxes

3.5.4.3.2. Atomicity (Can an instruction be interrupted by another ?)
3.5.4.3.3. Priorities

Release 2007a+ 180/546
Revision 4.2 vA



Previous

PonSpace
TECHNOLOGIES
Back to table of contents Next

3.5.4.3.1. Mailboxes

Suppose that an application has several tasks, some of which post messages in a mailbox while others read them

asynchronously.

This communication mechanism is possible because the OS libraries provide send and receive procedures. It is likely that the
source files will be unavailable because the procedures are part of the OS libraries, but the mechanism needs to be modelled if

the analysis is to be meaningful.

By default, PolySpace Verifier will automatically stub the missing OS send and receive procedures. Such a stub will exhibit the

following behaviour:

»  for send(char *buffer, int length), the content of the buffer will be written only when the procedure is called;
»  for receive(char *buffer, int *length), each element of the buffer will contain the full range of values

appropriate to that data type.

This and other mechanisms are available, with different levels of precision.

L et PolySpace Verifier stub
automatically

*  quick and easy to code;

* imprecisebecause there is no direct connection between a mailbox
sender and receiver. That means that even if the sender is only submitting
data within a small range, the full data range appropriate for the type(s) will
be for the receiver data.

Provide a real mailbox mechanism

*  can be very costly (time consuming) to implement;

. can introduce errors in the stubs;

* provideslittle additional benefit when compared to the upper
approximation solution

Provide an upper approximation |[This models the mechanism such that new read from the mailbox reads one of the recently
of the mailbox posted messages, but not necessarily the last one.

*  quick and easy to code;
e givespreciseresults,

Consider the following detailed implementation of the upper approximation solution.

polyspace_mailboxes.h

typedef struct r {
int |ength;
char content[ 100];
} MESSAGE;
ext ern MESSAGE mai | box;
voi d send( MESSACE * nsQ);
voi d recei ve( MESSACE *nsg);

polyspace_mailboxes.c

#i ncl ude "pol yspace. h"
MESSAGE nmi | box;

voi d send( MESSACGE * nsgQ)
{

Release 2007a+
Revision 4.2 vA

181/546



volatile int test;
if (test) nmmil box = *nsQ;
/1 a potential wite to the nmil box

}
voi d recei ve( MESSAGE *nsQ)
{
*meg = mail box;
}

Original code

#i ncl ude "pol yspace_nui | boxes. h"
void t1(void)
{
MESSAGE nsg _to_send;
int i;
for (i=0; i<100; i++)
nmeg_to _send.content[i] = 1i;
neg. | ength = 100;
send( &nsgQ) ;
}
void t2(void)
{
MESSAGE nsg_t o_read;
receive (&rsg_to_read);

PolySpace Verifier behaviour then proceeds on the assumption that each new read from the mailbox reads a message, but not
necessarily the last one.

The associated launching command is
pol yspace-c -entry-points tl1,t2

Release 2007a+ 182/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.3.2. Atomicity (Can an instruction be interrupted by another?)

Atomic: In computer programming, atomic describes a unitary action or object that is essentially indivisible,
unchangeable, whole, and irreducible

Atomicity: In a transaction involving two or more discrete pieces of information, either all of the piecesare
committed or none are.

Instructional decomposition

In general terms, PolySpace Verifier does not take into account either CPU instruction decomposition or timing
considerations.

It is assumed by PolySpace that instructions are never atomic except in the case of read and write instructions.
PolySpace Verifier makes an upper approximation of all scheduling and all interleaving. There are more paths
modelled than could happen during execution, but given that all possible paths ar e always analysed, this has no
adverse effect on of the results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example). In this case, the CPU needs at least
two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value of 0x0000. Now suppose 0xFF55 is
written it. If the operation was not atomic it could be interrupted by another instruction in the middle of the write
operation.

e Task 1: Writes 0xFF55 to x.
e Task 2: Interrupts task 1. Depending on the timing, the value of x could be any of 0xFFO00,
0x0055 or 0xFF55.

PolySpace Verifier considers write/read instructions atomic, so task 2 can only read OxFF55, even if X is not
protected (refer to Protecting shared variables).

Critical sections

In terms of critical sections, PolySpace Verifier does not model the concept of atomicity. A critical section only
guarantees that once the function associated with -critical-section-begin has been called, any other function
making use of the same label will be blocked. All other functions can still continue to run, even if somewhere else
in another task a critical section has been started.

PolySpace Verifier’s analysis of Run Time Errors (RTE) supposes that there was no conflict when writing the
shared variables. Hence even if a shared variable is not protected, the RTE analysis is complete and correct.

More information is available in the critical sections section.

Release 2007a+ 183/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.5.4.3.3. Priorities

Priorities are not taken into account by PolySpace as such. However, the timing implications of software
execution are not relevant to the analysis performed by Verifier, which is usually the primary reason for
implementing software task prioritisation. In addition, priority inversion issues can mean that it would be
dangerous to assume that priorities can protect shared variables. For that reason, PolySpace make no such
assumption.

In practice, while there is no facility to specify differing task priorities, all priorities ar e taken into account
because of the default behaviour of PolySpace Verifier assumes that:

o all task entry points (as defined with the option - ent r y- poi nt S) start potentially at the
same time;

* they can interrupt each other in any order, no matter the sequence of instructions — and so all
possible interruptions will be accounted for, in addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply use pol yspace-c —entry-
poi nts t1,t2 inthe usual way.

e tl will be able to interrupt t2 at any stage of t2, which models the behaviour at execution time;
* 2 will be able to interrupt t1 at any stage of t1, which models a behaviour which (ignoring
priority inversion) would never take place during execution. PolySpace Verifier has made an upper
approximation of all scheduling and all interleaving. There are more paths modelled than could
happen during execution, but this has no adverse effect on of the results obtained.

Release 2007a+ 184/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4. PolySpace day to day usage

The Pol ySpacel nOned i ck plug-in has been specially designed for developers. Indeed, they tend to
work on the same project for some times (new code, unit tests, integration, etc.). It also means that
they will need the same options for different files within their project. All other launchings for the same
project (or for other files of the same application) will require the same set of options.

Once the setting up done, Pol ySpacel nOneC i ck will use for it as many files as the project holds,
without having to update the options: launching an analysis is then just a matter of clicking.

On a Windows platform, the plug-in allows to install a PolySpace Toolbar in the Windows Notification
area and a “Send t o” facility on the desktop pop-up menu:

Set active project
Open active project
Viewer
Lavmcher
Spooler
Help
About
Eit
Bl B o122pM
Send To 4 i1 Compressed (zipped) Folder
Cut (& Desktop (create shortout).DeskLink
Copy ™ Emacs
Crean Shoreit .__J Mail Recipient.MAFPIMail
Delete &8 14y Doolmacis
Rename ) Motepad++
. [ » [FalSpece
Lisedio & Skype
% WinSCP3 (upload using SFTP or SCP)
= DVD/CO-RW Driva (D:)

Related subjects:
4.1. PolySpace In One Click Usage

4.2. PolySpacein a Right Click

Release 2007a+ 185/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.1. PolySpace In One Click Usage

Usage consists in launching analysis through out an active PolySpace project.

Create an active configuration file project.

In each PolySpace product you can find a PolySpace configuration file (associated to each language)
which can be copied in your own directory and can serve as a basis for your own active configuration
project file. One configuration file can found for each language located in <Pol ySpace | nstal |

Pr oduct s>\ Exanpl es\ Deno_<Language> folder.

You can also use the PolySpace Launcher added on your desktop windows during installation to create
a new active project.

TaskBar icon usage

Set active project
Open active project
Viewer

Launcher

Spooker

Help

Alboiit
Exit

For a new project, choose an active PolySpace configuration project file, with a . cf g (a Verifier
Configuration file) or . dsk (a Desktop Configuration file) extension. Some common options will be set
up in this file, and all further launching analysis will consider this active set of options.
. Set active project

Before you start, you have to choose a PolySpace configuration file, i.e. the container of the

common options. You can choose a template of a previous project and move in your working

directory. A standard file browser allows you to choose an active configuration file.

By default there is no selected configuration file. You can create an empty file with a . cf g or .

dsk extension.
. Open active project
The active configuration file can be updated with a standard Pol ySpace Launcher graphical

interface. It allows setting or updating all PolySpace common options of a development project.
It includes directives of compilation, options, path of standard and specific headers, etc. It will
not take into account the precision of an analysis and the results directory.

The active configuration file can be updated every time you consider that a coding file is part of

the whole analysis.
« Launcher

Release 2007a+ 186/546
Revision 4.2 vA



It allows launching the standard graphical interface PolySpace Launcher.
o Viewer

It allows you to see results with the standard graphical interface PolySpace Viewer. By
default, the viewer opens results in the results directory, set with the “Analysis

Parameters” dialog box.

« Spool er
If a remote launching has been selected with the “PolySpace Preferences” dialog box, this
action launches the PolySpace Spooler to follow the status of the analysis.

Release 2007a+ 187/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.2. PolySpace in a Right Click

et T

J 13 Conpressed Gped) Foer

Qu ([ Desktop (create shortout). DeskLink
Copy W Emacs
’ | J
Create Shortout ,-J Mail Recipient MAPIMai
Delete L) My Documents
Rename # Notepad++
Properties [rlpobepscs ]
- & Skype

%y WinSCP3 (upload using SFTP or SCF)
& DVD/CO-RW Driva (D:)

Use the right click button on one or more selected files, to start an analysis in a standard mode, using
the active configuration file.

Note that the short cut in “Send To” user’s “Docunent and Setti ngs” refers to the call of

<Pol ySpace Common I nstal | >\ Pol ySpacel nOneCd i ck\ Pol ySpacel nOneC i ck. exe -f
unit

Release 2007a+ 188/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

5. MISRA Checker

The PolySpace MISRA checker is an easy to use module that helps developers achieves MISRA
compliance. Inside PolySpace, MISRA checker is natively based on MISRA-C:2004, (http://www.misra-

c.com) enabling PolySpace to provide messages at compile phase (mainly) when rules are not
respected.

Only two options —misra2 and —includes-to-ignore, permit to enable and verify C code sources,
approximately on all of the 141 rules, part of MISRA-C:2004 and one rule (named 15.0) implemented
by PolySpace (this rule is described in the MISRA-C:2004 manual about switch statements). The

“Getting Started” section explains how to setting up the MISRA checker from a graphical point of view
using PolySpace Launcher.

Theses 142 rules are divided in three categories:
1. 102 required and advisory rules fully supported. PolySpace can check all theses rules
without any limitations.
2. 20 required and advisory rules partially supported. PolySpace can check all theses rules
with some limitations. Theses limitations are described in the associated “Note” paragraph for
each rule.
3. 20 required and advisory rules which can not be verified by PolySpace. It is not possible
to verify theses rules because; most of the time it is outside PolySpace static checking scope.
It can concern documentation, dynamic aspects or functional aspects of MISRA rules.
Theses rules are not checked. The “comment” column details the reason in section “Rules
not checked”.

Note that every violation, warning or error, will be written in the log file at compilation time of a
PolySpace analysis, except for rules 9.1 (NIV checks), 12.11 (OVEL check using —detect-unsigned-

overflows), 13.7 (grey checks), 14.1 (grey checks), 16.2 (Call graph) and 21.1 (all runtime errors).

You will find a set of required and advisory MISRA rules in “Appl yi ng coding rules to reduce
or anges” section which can have direct or indirect impact on the PolySpace selectivity (reliability
percentage).

Related subjects:
5.1. Rules supported

5.2. Rules partially supported
5.3. Rules not checked

Release 2007a+ 189/546
Revision 4.2 vA


http://www.misra-c.com/
http://www.misra-c.com/
file:///E|/PolySpace/Documentation/HTML_C/Coloured_source_code_for_c.htm

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.1. Rules supported

Related subjects:
5.1.1. Language extensions

5.1.2. Character sets

5.1.3. Identifiers

5.1.4. Types

5.1.5. Constants

5.1.6. Declar ations and definitions
5.1.7. Initialisation

5.1.8. Arithmetic type conver sion
5.1.9. Pointer type conversion
5.1.10. Expressions

5.1.11. Control statement expressions
5.1.12. Control flow

5.1.13. Switch statements

5.1.14. Functions

5.1.15. Pointersand arrays

5.1.16. Structures and unions
5.1.17. Preprocessing dir ectives
5.1.18. Standard libraries

5.1.19. Run-timefailures

Release 2007a+ 190/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.1. Language extensions
N. MISRA Definition Messages in log file Detailed PolySpace specification
2.2 source code shall C++ comments shall not be C++ comments are handled as comments

only use /* ... */ style
comments

used.

but lead to a violation of this MISRA rule

2.3

The character
sequence /* shall not
be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also raised when the

character sequence /* inside a C++
comment.

Release 2007a+
Revision 4.2 vA

191/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

5.1.2. Character sets

4.1 Only those escape  |\<character> is not an ISO C
sequences which are |escape sequence

defined in the ISO C |Only those escape sequences
standard shall be which are defined in the ISO C

used. standard shall be used.
4.2 Trigraphs shall not  [Trigraphs shall not be used. Trigraphs are handled and converted to
be used. the equivalent character but lead to a
violation of the MISRA rule
Release 2007a+ 192/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.3. Identifiers
5.2 Identifiers in an inner o Local declaration of Assumes that rule 8.1 is not violated.
scope shall not use ‘XX is hiding another
the same name as identifier.
an identifier in an e Declaration of
outer scope, and parameter ‘XX’ is hiding
therefore hide that another identifier.
identifier.
5.3 A tydedef name shall + {typedef name }'%s' |Warning when a typedef name is reused
be a unique identifier should not be reused. as another identifier name.
(already used as { typedef
name } at %s:%d)
5.4 A tag name shall be « {tag name }'%s' should |warning when a tag name is reused as
a unique identifier not be reused. (already another identifier name
used as {tag name } at %s:
%(d)
5.5 No object or function « {static identifier/ warning when a static name is reused as
identifier with a static parameter name }'%s' another identifier name
storage duration should not be reused.
should be reused. (already used as { static
identifier/parameter name }
at %s:%d)
5.6 No identifier in one « {member name }'%s' |warning when a idf in a namespace is
name space should should not be reused. reused in another namespace
have the same (already used as { member
spelling as an name } at %s:%d)
identifier in another
name space, with the
exception of structure
and union member
names.
5.7 No identifier name « {identifier}'%s' should |warning on other conflicts (including
should be reused. not be reused. (already member names)
used as { identifier} at %s:%
d)

Release 2007a+
Revision 4.2 vA

193/546



Previous

PonSpace

TECHNOLOGIES

Back to table of contents

5.1.4. Types

6.1

The plain char type
shall be used only for
the storage and use
of character values

e Only permissible
operators on plain chars
are '=', '=="or 'l=' operators.

There is a warning when a plain char is
used with an operator other than =, == or !

signed int shall be at
least 2 bits long.

6.3 typedefs that indicate « typedefs that indicate |No warning is given in typedef definition.
size and signedness size and signedness There is no exception on bitfields.
should be used in should be used in place of
place of the basic the basic types.
types

6.4 Bit fields shall only » Bit fields shall only be
be defined to be of defined to be of type
type unsigned int or unsigned int or signed int.
signed int.

6.5 Bit fields of type » Bit fields of type signed [No warning on anonymous signed int

int shall be at least 2 bits
long.

bitfields of width O - Extended to all
signed bitfields of size <=1 (if Rule 6.4 is
violated).

Release 2007a+
Revision 4.2 vA

1194/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

5.1.5. Constants

7.1 Octal constants *  Octal constants other
(other than zero) and than zero and octal escape
octal escape sequences shall not be
sequences shall not used.
be used. «  Octal constants (other

than zero) should not be
used.

* Octal escape
sequences should not be
used.

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.6. Declarations and definitions

8.1 Functions shall have e Function ‘XX’ has no |Prototype visible at call must be complete.
prototype complete prototype visible
declarations and the at call.
prototype shall be «  Function ‘XX’ has no
visible at both the prototype visible at
function definition definition.
and call.

8.2 \Whenever an object Whenever an object or
or function is function is declared or
declared or defined, defined, its type shall be
its type shall be explicitly stated.
explicitly stated

8.4 If objects or functions « If objects or functions |During link phase, errors are converted
are declared more are declared more than into warnings with -permissive-link option.
than once their types once their types shall be  [Cannot be turned Off.
shall be compatible. compatible.

* Global declaration of
'XX' function has
incompatible type with its
definition.

*  Global declaration of
‘XX variable has
incompatible type with its
definition.

8.5 There shall be no «  Object 'XX' should not [Tentative of definitions are considered as
definitions of objects be defined in a header file. |definitions.
or functions in a «  Function 'XX' should
header file not be defined in a header

file.

8.6 Functions shall e Function 'XX"' should
always be declared be declared at file scope.
at file scope.

8.9 Definition: An e Procedure/Global Tentative of definitions are considered as
identifier with variable XX multiply definitions, No warning on undefined
external linkage shall defined. objects with —allow-undef-variables option,
have exactly one * Forbidden multiple No warning on predefined symbols.
external definition. tentative of definition for

object ‘XX'.

* Global variable has
multiples tentative of
definitions

Release 2007a+
Revision 4.2 vA

196/546



8.10

All declarations and
definitions of objects
or functions at file
scope shall have
internal linkage
unless external
linkage is required

Function/Variable ‘XX’

should have internal
linkage.

Not checked if —main-generator option is
set. Assumes that 8.1 is not violated. No
warning if O uses.

8.11

The static storage
class specifier shall
be used in definitions
and declarations of
objects and functions
that have internal
linkage

specifier should be used on

‘static’ storage class

internal linkage symbol
XX

8.12

\When an array is
declared with
external linkage, its
size shall be stated
explicitly or defined
implicitly by
initialisation

Array ‘XX’ has

unknown size.

Release 2007a+
Revision 4.2 vA

197/546



Previous

PonSpace

TECHNOLOGIES

Back to table of contents

5.1.7. Initialisation

9.1

All automatic
variables shall have
been assigned a
value before being
used.

Done by Verifier (NIV Checks).

Cannot be Off.

9.2

Braces shall be used
to indicate and match
the structure in the
non-zero initialization
of arrays and
structures.

* Braces shall be used
to indicate and match the
structure in the non-zero

initialization of arrays and
structures.

9.3

In an enumerator list,
the ‘=" construct shall
not be used to
explicitly initialise
members other than
the first, unless all
items are explicitly
initialised.

e In an enumerator list,
the ‘=" construct shall not
be used to explicitly
initialise members other
than the first, unless all
items are explicitly
initialised.

Release 2007a+
Revision 4.2 vA

1198/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.8. Arithmetic type conversion
10.1 The value of an «  Implicit conversion of the 1. ANSI C base types

expression of integer
type shall not be
implicitly converted to
a different underlying
type if

a) it is not a
conversion to a wider
integer type of the
same signedness, or
b) the expression is
complex, or

c) the expression is
not constant and is a
function argument, or
d) the expression is
not constant and is a
return expression

expression of underlying type
‘??" to the type *??’ that is not a
wider integer type of the same
signedness.

* Implicit conversion of one of
the binary operands whose
underlying types are ‘??" and
i

* Implicit conversion of the
binary right hand operand of
underlying type ‘??’ to “??’ that
is not an integer type.

* Implicit conversion of the
binary left hand operand of
underlying type ‘??’ to ‘??’ that
IS not an integer type.

* Implicit conversion of the
binary right hand operand of
underlying type ‘??’ to ‘??’ that
is not a wider integer type of the
same signedness or Implicit
conversion of the binary ? left
hand operand of underlying
type ‘??’ to *??’, butitis a
complex expression.

* Implicit conversion of
complex integer expression of
underlying type ‘??’ to ‘??".

* Implicit conversion of non-
constant integer expression of
underlying type *??’ in function
return whose expected type is
7.

e Implicit conversion of non-
constant integer expression of
underlying type ‘??’ as
argument of function whose

corresponding parameter type
Is “?27?'.

order (signed char, short, int,
long) defines that T2 is wider
than T1 if T2 is on the right
hand of T1 or T2 =T1. The
same interpretation is
applied on the unsigned
version of base types.

2. An expression of bool or
enum types has ‘int’ as
underlying type.

3. Plain char may have
signed or unsigned
underlying type (depending
on PolySpace target
configuration or option
setting).

4. The underlying type of a
simple expression of struct.
bitfield is the base type used
in the bitfield definition, the
bitfield width is not token into
account and it assumes that
only signed | unsigned int
are used for bitfield (Rule
6.4).

Release 2007a+
Revision 4.2 vA

1199/546



complex expression of
integer type may only
be cast to a type that
is narrower and of the
same signedness as
the underlying type of
the expression

underlying type ‘??" may only
be cast to narrower integer type
of same signedness, however
the destination type is “??".

10.2 The value of an « Implicit conversion of the  |[ANSI C base types order (float,
expression of floating expression from “??’ to ‘??’ that |double) defines that T2 is wider
type shall not be is not a wider floating type. than T1 if T2 is on the right hand
implicitly converted to «  Implicit conversion of the of TLor T2 =T1.

a different type if binary ? right hand operand

a) it is not a from ‘2?2’ to ‘??’, but it is a

conversion to a wider complex expression.

floating type, or +  Implicit conversion of the

b) the expression is binary ? right hand operand

complex, or from ‘??’ to *??’ that is not a

C) the expression is a wider floating type or Implicit

function argument, or conversion of the binary ? left

d) the expression is a hand operand from ‘??’ to ‘??’,

return expression but it is a complex expression.
* Implicit conversion of
complex floating expression
from ‘??’ to ‘??".
e Implicit conversion of
floating expression of ‘??’ type
in function return whose
expected type is ‘??".
e Implicit conversion of
floating expression of ‘??’ type
as argument of function whose
corresponding parameter type
is 27"

10.3 The value of a « Complex ppliedta of (2) ANSI C base types order

(signed char, short, int, long)
defines that T1 is narrower than
T2 if T2 is on the right hand of T1
or T1 =T2. The same
ppliedtation is applied on the
unsigned version of base types.
(b) an expression of bool or
enum types has ‘int’ as
underlying type. (c) Plain char
may have signed or unsigned
underlying type (depending on
|[Polyspace Verifier target
configuration or option setting).
(d) The underlying type of a
simple expression of struct.
bitfield is the base type used in
the bitfield definition, the bitfield
width is not token into account
and it assumes that only signed,
unsigned int are used for bitfield
(Rule 6.4).

Release 2007a+
Revision 4.2 vA

200/546




10.4 The value of a «  Complex expression of ‘??’ JANSI C base types order (float,
complex expression of type may only be cast to double) defines that T1 is
float type may only be narrower floating type, however |narrower than T2 if T2 is on the
cast to narrower the destination type is ‘??". right hand of T1 or T2 = T1.
floating type
10.5 If the bitwise operator » Bitwise [<<|~] is applied to
~ and << are pplied to the operand of underlying type
an operand of ['unsigned char’|'unsigned
underlying type short’], the result shall be
unsigned char or immediately cast to the
unsigned short, the underlying type.
result shall be
immediately cast to
the underlying type of
the operand
10.6 The “U” suffix shall be * No explicit "U’ suffix on
applied to all constants of an unsigned type.
constants of unsigned
types

Release 2007a+
Revision 4.2 vA

201/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.9. Pointer type conversion

11.1 Conversion shall not «  Conversion shall not be Casts and implicit conversions
be performed between performed between a pointer to [involving a function pointer
a pointer to a function a function and any type other
and any type other than an integral type.
than an integral type

11.2 Conversion shall not e Conversion shall not be There is also a warning on
be performed between performed between a pointer to |qualifier loss
a pointer to an object an object and any type other
and any type other than an integral type, another
than an integral type, pointer to a object type or a
another pointer to a pointer to void.
object type or a
pointer to void

11.3 A cast should not be e« A cast should not be Exception on zero constant.
performed between a performed between a pointer Extended to all conversions
pointer type and an type and an integral type.
integral type

11.4 A cast should not be e A cast should not be [Extended to all conversions
performed between a performed between a pointer to
pointer to object type object type and a different
and a different pointer pointer to object type.
to object type.

11.5 A cast shall not be « A castshall not be [Extended to all conversions
performed that performed that removes any
removes any const or const or volatile qualification
volatile qualification from the type addressed by a
from the type pointer
addressed by a pointer

Release 2007a+
Revision 4.2 vA

202/546




PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.10. Expressions

12.1 Limited dependence » Limited dependence
should be placed on C’s should be placed on C’s
operator precedence rules operator precedence rules in
in expressions expressions

12.3 The sizeof operator should « The sizeof operator should [No warning on volatile accesses and
not be used on not be used on expressions function calls
expressions that contain that contain side effects.
side effects.

12.4 The right hand operand of « The right hand operand of [No warning on volatile accesses and
a logical && or || operator a logical && or || operator shall [function calls.
shall not contain side not contain side effects.
effects.

12.5 The operands of a logical « operand of logical && is During preprocessing, violations of this
&& or || shall be primary- not a primary expression rule are detected on the expressions in
expressions. . operand of |Ogica| ” is not #i f directives.

a primary expression Allowed exception on associatively (a
«  The operands of a logical [&& b &&c), (a|| b c).

&& or || shall be primary-

expressions.

12.6 Operands of logical « Operand of """ logical "the operand of a logical operator
operators (&&, || and !) operator should be effectively [should be a Boolean". As there are no
should be effectively Boolean. Left operand of '%s' [Boolean in "C" but as the standard
Boolean. Expression that logical operator should be assumes it, some operator return
are effectively Boolean effectively Boolean. Boolean like expression (var == 0).
should not be used as « Right operand of '%s' Example:
operands to operators logical operator should be unsi gned char flag; ..if (!
other than (&&, || or!). effectively Boolean. flag) raises the rule: the operand of

* Boolean should not be "I"is"fl ag". And "f | ag" is not a
used as operands to operators [Boolean but an unsi gned char. To
other than '&&", ’||" or ™. be 12.6 MISRA compliant, the code
need to be written like this:
if ('( flag '=0)) ..orif
(flag == 0)

12.7 Bitwise operators shall not « [~/Left Shift/Right shift/&] [The underlying type for an integer used
be applied to operands operator applied on an in a re-processor expression is signed
whose underlying type is expression whose underlying  |when :
signed type is signed. - it does not have a ‘u’ or ‘U’ suffix

«  Bitwise ~ on operand of - it is small enough to fit into a 64 bits
signed underlying type ‘??". signed number

» Bitwise [<<|>>] on left hand

operand of signed underlying

type “?7?'.

* Bitwise [& | ] on two

operands of s

Release 2007a+
Revision 4.2 vA

203/546



12.8 The right hand operand of « shift amount is negative The numbers that are manipulated in
a shift operator shall lie « shift amount is bigger than [preprocessing directives are 64 bits
between zero and one 64 wide so that valid shift range is
less than the width in bits . Bitwise [<< >>] count out [Petween 0 and 63
of the underlying type of of range [0 ..X] (width of the Check is also extended onto bitfields
the left hand operand. underlying type ‘??’ of the left  [with the field width or the width of the

hand operand — 1).. base type when it is within a complex
expression

12.9 The unary minus operator « Unary — on operand of The underlying type for an integer used
shall not be applied to an unsigned underlying type ‘??’. [in a re-processor expression is signed
expression whose «  Minus operator applied to  [when:
underlying type is an expression whose e jtdoes not have a ‘u’ or ‘U’
unsigned. underlying type is unsigned suffix

* itis small enough to fit into a 64
bits signed number

12.10 The comma operator shall e The comma operator shall
not be used. not be used.

12.13 The increment (++) and « The increment (++) and warning when ++ or -- operators are
decrement (--) operators decrement (--) operators not used alone.
should not be mixed with should not be mixed with other
other operators in an operators in an expression
expression

Release 2007a+
Revision 4.2 vA

204/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.11. Control statement expressions
13.1 Assignment operators *  Assignment operators shall

shall not be used in
expressions that yield
Boolean values.

not be used in expressions that
yield Boolean values.

whose results are
invariant shall not be
permitted

should not have invariant result.
(Result is always ‘'true/false’).

13.2 Tests of a value « Tests of a value against No warning is given on integer
against zero should zero should be made explicit,  |constants. Example: i f (2)
be made explicit, unless the operand is effectively
unless the operand is Boolean
effectively Boolean

13.7 Boolean operations « Boolean operator '%s' Done by Verifier (grey Checks).

It is also checked during
compilation on comparison
between with a least one
constant operand.

Cannot be Off.

Release 2007a+
Revision 4.2 vA

205/546




Previous

PonSpace

TECHNOLOGIES

Back to table of contents

5.1.12. Control flow

Next

14.1 There shall be no [Done by PolySpace (grey
unreachable code. checks).
Cannot be Off.
14.2 All non-null All non-null statements shall either:
statements shall either * have at lest one side effect
have at lest one side however executed, or
effect however « cause control flow to change
executed, or cause
control flow to change
14.4 The goto statement »  The goto statement shall
shall not be used. not be used.
14.5 The continue e  The continue statement
statement shall not be shall not be used.
used.
14.6 For any iteration * For any iteration statement
statement there shall there shall be at most one
be at most one break break statement used for loop
statement used for termination
loop termination
14.7 A function shall have » A function shall have a
a single point of exit at single point of exit at the end of
the end of the function the function
14.8 The statement forming e The body of a ‘do ... while’
the body of a switch, statement shall be a compound
while, do ... while or statement.
for statement shall be «  The body of a ‘for’
a compound statement statement shall be a compound
statement.
e The body of a ‘switch’
statement shall be a compound
statement...
14.9 An if (expression) e Anif (expression) construct
construct shall be shall be followed by a
followed by a compound statement.
compound statement. » The else keyword shall be
The else keyword followed by either a compound
shall be followed by statement, or another if
either a compound statement
statement, or another
if statement

Release 2007a+
Revision 4.2 vA

206/546



14.10 Ilif ... else if « Allif ... else if constructs

constructs should should contain a final else
contain a final else clause.
clause.
Release 2007a+ 207/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.13. Switch statements
15.0 Unreachable code is . switch On the following example, the rule is displayed
detected between statements syntax  [in the log file at line 3:
SW t ch statement normative
and first case. restrictions. 2 switch(index) {
Note that this is not a 3 var =var + 1, // R.ULE 15. 0
MISRA-C 2004 rule. / violated
4 case 1:
The code between switch statement and first
case is checked as grey by PolySpace. It follows
ANSI standard behaviour.
15.1 A switch label shall * A switch label
only be used when the| shall only be used
most closely- when the most
enclosing compound closely-enclosing
statement is the body compound
of a switch statement statement is the
body of a switch
statement
15.2 IAn unconditional e An
break statement shall unconditional break
terminate every non- statement shall
empty switch clause terminate every non-
empty switch clause
15.3 The final clause of a * The final clause
switch statement shall of a switch
be the default clause statement shall be
the default clause
15.4 A switch expression e Aswitch
should not representa | expression should
value that is not represent a
effectively Boolean value that is
effectively Boolean
15.5 Every switch « Every switch
statement shall have statement shall
at least one case have at least one
clause case clause

Release 2007a+
Revision 4.2 vA

208/546




PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.14. Functions

16.1 Functions shall not be *  Function ‘XX’ should not be
defined with variable defined as var ar gs.
numbers of arguments.

16.2 Functions shall not «  Function %s should not call [Done by PolySpace (Cal |
call themselves, either itself. gr aph in the viewer gives the
directly or indirectly. information). PolySpace also

checks that partially during
compilation phase.
Cannot be Off.

16.3 Identifiers shall be « Identifiers shall be given for JAssumes Rule 8.6 is not violated.
given for all of the all of the parameters in a
parameters in a function prototype declaration.
function prototype
declaration.

16.5 Functions with no e Functions with no [Definitions are also checked.
parameters shall be parameters shall be declared
declared with with parameter type void.
parameter type void.

16.8 All exit paths from a «  Missing return value for non{Warning when a non-void
function with non-void void function ‘XX'. [function is not terminated with an
return type shall have unconditional return with an
an explicit return expression.
statement with an
expression.

16.9 A function identifier *  Function identifier ‘XX’
shall only be used should be preceded by a ‘&’ or
with either a followed by a parameter list.
preceding &, or with a
parenthesised
parameter list, which
may be empty.

Release 2007a+
Revision 4.2 vA

209/546




PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.15. Pointers and arrays
17.5 A type should not contain A type should not contain more

more than 2 levels of pointer
indirection

than 2 levels of pointer
indirection

Release 2007a+
Revision 4.2 vA

210/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.16. Structures and unions
18.1 All structure or union e All structure or union types
types shall be shall be complete at the end of
complete at the end of a translation unit.
a translation unit.
18.4 Unions shall not be e Unions shall not be used.
used

Release 2007a+
Revision 4.2 vA

211/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
5.1.17. Preprocessing directives

19.1 #include statements in [A message is displayed when a
a file shall only be #include directive is preceded by
preceded by other pre-|other things than pre-processor
processors directives |directives, comments, spaces or
or comments “newlines”.

19.2 Non-standard A message is displayed on
characters should not characters ', \, " or /* between <
occur in header file and > in #i ncl ude
names in #include <fil ename>
directives « A message is displayed on

characters ', \or /* between "
and " in #i ncl ude
“filenanme"

19.3 The #include directive +  #include' expects Cannot be Off.
shall be followed by "FILENAME" or <FILENAME>
either a <filename> or « #include_next' expects
"filename” sequence. "FILENAME" or <FILENAME>

19.5 Macros shall not be e Macros shall not be
#tdefine’d and #define'd within a block.
#undef'd within a «  Macros shall not be
block. #undef'd within a block.

19.6 #undef shall not be e #undef shall not be used.
used.

19.7 A function should be * Message on all function-like
used in preference to macros expansions
a function like-macro.

19.8 A function-like macro « arguments given to macro [Cannot be Off.
shall not be invoked ‘<name>'
without all of its . macro <name>' used
arguments without args.

* macro <name>' used with
just one arg.

* macro <name>' used with
too many (<number>) args.

Release 2007a+
Revision 4.2 vA

212/546



19.9 Arguments to a « Macro argument shall not [This rule is detected as violated

function-like macro look like a preprocessing when the '# character appears in
shall not contain directive. a macro argument (outside a
tokens that look like string or character constant)
pre-processing
directives.

19.10 In the definition of a » Parameter instance shall be
function-like macro enclosed in parentheses.

each instance of a
parameter shall be
enclosed in
parentheses unless it
is used as the
operand of # or ##.
19.11 All macro identifiers in e “<name>'is not defined.
preprocessor
directives shall be
defined before use,
except in #ifdef and
Hifndef preprocessor
directives and the
defined() operator.

19.12 There shall be at most « More than one occurrence
one occurrence of the of the # or ## preprocessor
# or ## pre-processor operators.

operators in a single
macro definition.

19.13 The # and ## pre- * Message on definitions of
processor operators macros using # or ## operators
should not be used

19.14 The defined pre- « “defined' without an Cannot be Off.
processor operator identifier.

shall only be used in
one of the two
standard forms.
19.16 Preprocessing « directive is not syntactically
directives shall be meaningful.

syntactically
meaningful even when
excluded by the
preprocessor.

Release 2007a+ 213/546
Revision 4.2 vA



All #else, #elif and
#endif preprocessor
directives shall reside
in the same file as the
#if or #ifdef directive
to which they are
related.

o “#elif not within a
conditional.

e #else' not within a
conditional.

o #elif not within a
conditional.

*  “#endif' not within a
conditional.

e unbalanced #endif'.
e unterminated #if'
conditional.

e unterminated “#ifdef'
conditional.

e unterminated “#ifndef'
conditional.

Release 2007a+
Revision 4.2 vA

Cannot be Off.




PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.1.18. Standard libraries

20.1 Reserved identifiers,  The macro '<name>’ shall
macros and functions not be redefined.
in the standard library, «  The macro ‘<name>’ shall
shall not be defined, not be undefined.
redefined or undefined.

20.2 The names of e |dentifier ‘XX’ should not be |[In case a macro whose name
standard library used. corresponds to a standard library
macros, objects and macro, object or function is
functions shall not be defined, the rule that is detected
reused. as violated is 20.1. Tentative of

definitions are considered as
defintions.

20.4 Dynamic heap e« The macro ‘<name>’ shall |In case the dynamic heap
memory allocation not be used. memory allocation functions are
shall not be used. « |dentifier ‘XX’ should not be lactually macros and the macro is

used. expanded in the code, this rule is
detected as violated. Assumes
rule 20.2 is not violated.

20.5 The error indicator e The error indicator errno IAssumes that rule 20.2 is not
errno shall not be used shall not be used violated

20.6 The macro offsetof, in « The macro ‘<name>’ shall JAssumes that rule 20.2 is not
library <stddef.h>, not be used. violated
shall not be used. « Identifier ‘XX’ should not be

used.

20.7 The setjmp macro and e« The macro ‘<name>’ shall [|In case the | ongj np function is
the longjmp function not be used. actually a macro and the macro
shall not be used. + Identifier ‘XX’ should not be |is expanded in the code, this rule

used. is detected as violated. Assumes
that rule 20.2 is not violated

20.8 The signal handling The macro ‘<name>’ shall |:n case some of the signal
facilities of <signal.h> not be used. unctions are actually macros
shall not be used. e Identifier ‘XX’ should not be land are expanded in the code,

used. this rule is detected as violated.
IAssumes that rule 20.2 is not
violated

20.9 The input/output e The macro ‘<name>’ shall |:n case the input/output library
library <stdio.h> shall not be used. unctions are actually macros
not be used Iin e Identifier ‘XX’ should not be [and are expanded in the code,
production code. used. this rule is detected as violated.

IAssumes that rule 20.2 is not
violated

Release 2007a+ 215/546
Revision 4.2 vA



20.10

The library functions
atof, atoi and toll from
library <stdlib.h> shall
not be used.

e The macro <name>’ shall
not be used.

e Identifier ‘XX’ should not be
used.

In case the at of , at oi and

at ol | functions are actually
macros and are expanded, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.11

The library functions
abort, exit, getenv and
system from library
<stdlib.h> shall not be
used.

e The macro <name>’ shall
not be used.

* |dentifier ‘XX’ should not be
used.

In case the abort, exit, getenv
and system functions are
actually macros and are
expanded, this rule is detected
as violated. Assumes that rule
20.2 is not violated

20.12

The time handling
functions of library
<time.h> shall not be
used.

e The macro <name>’ shall
not be used.

e Identifier ‘XX’ should not be
used.

In case the time handling
[functions are actually macros
and are expanded, this rule is
detected as violated. Assumes

that rule 20.2 is not violated

Release 2007a+
Revision 4.2 vA

216/546




Previous

PonSpace

TECHNOLOGIES

Back to table of contents

Next

5.1.19. Run-time failures

21.1

Minimisation of run-
time failures shall be
ensured by the use of
at least one of:

a) static analysis tools/
techniques;

b) dynamic analysis
tools/techniques;

c) explicit coding of
checks to handle run-

time faults.

[Done by PolySpace Verifier (Run-
time error checks).

Cannot be Off.

Release 2007a+
Revision 4.2 vA

217/546


file:///E|/PolySpace/Documentation/HTML_C/Coloured_source_code_for_c.htm

Previous

PonSpace

TECHWOLOGIES

Back to table of contents

5.2. Rules partially supported

environment

Rule 1.1 All code shall conform to ISO 9899:1990 “Programming languages — C”,
(required) amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

Messages in log:

. ANSI C does not allow “#include_next'

. ANSI C does not allow macros with variable arguments list
. ANSI C does not allow "#assert'

. ANSI C does not allow #unassert'

. ANSI C does not allow testing assertions

. ANSI C does not allow “#ident'

. ANSI C does not allow "#sccs'

. text following “#else' violates ANSI standard.

. text following #endif' violates ANSI standard.

. text following “#else' or “#endif' violates ANSI standard.
. ANSI C90 forbids 'long long int' type.

. ANSI C90 forbids 'long double' type.

. ANSI C90 forbids | ong | ong integer constants.

. Keyword 'inline’ should not be used.

. Array of zero size should not be used.

. Integer constant does not fit within unsigned long int.

. Integer constant does not fit within long int.

Note: All the supported extensions lead to a violation of this MISRA rule. Standard
compilation error messages do not lead to a violation of this MISRA rule and remain
unchanged. Can be turned to Off (see —misra2 option).

Release 2007a+
Revision 4.2 vA

Language 2.1 (required) |Assembly language shall be encapsulated and isolated.
extension
Message in log:
. Assembly language shall be encapsulated and isolated.
Note: no warnings if code is encapsulated in asmfunctions or in asmpragma (only warning is
given on asmstatements even if it is encapsulated by a MACRO). Can be turned to Off.
Identifier 5.1 (required) [ldentifiers (internal and external) shall not rely on the significance of more

than 31 characters

Message in log:
. ldentifier 'XX' should not rely on the significance of more than 31 characters.

218/546



Note: Only global variables (external linkage) are checked. Can be turned to Off

declarations and 8.3 (required) |[For each function parameter the type given in the declaration and definition
definitions shall be identical, and the return types shall also be identical.

. Definition of function 'XX' incompatible with its declaration.
Note: Assumes that rule 8.1 is not violated. The rule is restricted to compatible types. Can be
turned to Off

8.7 (required) [Objects shall be defined at block scope if they are only accessed from within
a single function

. Object 'XX' should be declared at block scope.
Note: Restricted to static objects. Can be turned to Off

8.8 (required) |An external object or function shall be declared in one file and only one file

. Function/Object 'XX' has external declarations in multiples files.
Note: Restricted to explicit extern declarations (tentative of definitions are ignored). Can be
turned to Off

expressions 12.2 The value of an expression shall be the same under any order of evaluation
that the standard permits.
(required)

. The value of 'sym' depends on the order of evaluation.
. The value of volatile 'sym' depends on the order of evaluation because of multiple
accesses.
Note: The expression is a simple expression of symbols (Unlikei = i ++; no detection on
tab[2] = tab[2]++;). Rule 12.2 check assumes that no assignment in expressions that yield a
Boolean values (rule 13.1) and the comma operator is not used (rule 12.10). Can be turned
to Off.

12.11 Evaluation of constant unsigned expression should not lead to wrap-around.
(advisory)
No message.

Note: This rule is partially implemented with —detect-unsigned-overflow option in PolySpace.

Concerning possible pre-processing overflows, PolySpace pre-processor does not take into
account target basic types and considers always 32-Bit long int. Cannot be ticked.

12.12 The underlying bit representations of floating-point values shall not be used.
(required)

. The underlying bit representations of floating-point values shall not be used.
Note: Warning on casts with float pointers (excepted with voi d *). Can be turned to Off.

control statement |13.3 (required)

. Floating-point expressions shall not be tested for equality or inequality.
expressions 9-p P 9 y q y

Release 2007a+ 219/546
Revision 4.2 vA



. Floating-point expressions shall not be tested for equality or inequality.

Note: Warning on directs tests only. Can be turned to Off.

13.4 (required)|The controlling expression of a for statement shall not contain any objects of
floating type

. The controlling expression of a for statement shall not contain any objects of floating
type

Note: If for index is a variable symbol, checked that it is not a float. Can be turned to Off.

13.5 (required)[The three expressions of a for statement shall be concerned only with loop
control

. 1st expression should be an assignment.

. Bad type for loop counter (XX).

. 2nd expression should be a comparison.

. 2nd expression should be a comparison with loop counter (XX).

. 3rd expression should be an assignment of loop counter (XX).

. 3rd expression: assigned variable should be the loop counter (XX).

Note: Checked if the for loop index (V) is a variable symbol; checked if V is the last assigned
variable in the first expression (if present). Checked if, in first expression, if present, is
assignment of V; checked if in 2nd expression, if present, must be a comparison of V,
Checked if in 3rd expression, if present, must be an assignment of V. Can be turned to Off.

13.6 (required) [Numeric variables being used within a f or loop for iteration counting should
not be modified in the body of the loop.

. Numeric variables being used within a f or loop for iteration counting should not be
modified in the body of the loop.

Note: Detect only direct assignments if the for loop index is known and if it is a variable
symbol. Can be turned to Off.

control flow

14.3 (required) JAll non-null statements shall either
a) have at lest one side effect however executed, or

b) cause control flow to change

. A null statement shall appear on a line by itself

Note: We assume that a ;' is a null statement when it is the first character on a line
(excluding comments). The rule is violated when:

. there are some comments before it on the same line.

. there is a comment immediately after it

. there is something else than a comment after the ;' on the same line.
Can be turned to Off.

Switch statements

15.0 (advisory)|Misra Switch syntax rules

. Switch statements syntax normative restriction

Note: Warning on declarations or instructions before the first switch case. PolySpace checks
that if declarations or statements are put between the swi t ch() and first case keyword.
This rule is a clearly advisory made by MISRA-C consortium.

Can be turned to Off.

Release 2007a+
Revision 4.2 vA

220/546



functions The identifiers used in the declaration and definition of a function shall be
16.4 (required)|identical.

. The identifiers used in the declaration and definition of a function shall be identical.
Note: Assumes that rules 8.8, 8.1 and 16.3 are not violated. Can be turned to Off.

The number of arguments passed to a function shall match the number of
16.6 (required) jparameters.

. Too many arguments to XX.
. Insufficient number of arguments to XX.
Note: Assumes that rule 8.1 is not violated. Can be turned to Off.

pointers and arrays |17.4 (required) |Array indexing shall be the only allowed form of pointer arithmetic.

. Array indexing shall be the only allowed form of pointer arithmetic.
Note: Warning on operations on pointers. (p+l , | +p and p- | , where p is a pointer and | an
integer). Can be turned to Off.

17.6 (required)[The address of an object with automatic storage shall not be assigned to an
object that may persist after the object has ceased to exist.

. Pointer to a parameter is an illegal return value. Pointer to a local is an illegal return
value.

Note: Warning when returning a local variable address or a parameter address. Can be

turned to Off.

preprocessing 19.4 (required) |C macros shall only expand to a braced initialiser, a constant, a
directives parenthesised expression, a type qualifier, a storage class specifier, or a do-
while-zero construct.

. Macro “<name>' does not expand to a compliant construct.
Note: We assume that a macro definition does not violate this rule when it expands to:
- abraced construct (not necessarily an initializer)
- a parenthesised construct (not necessarily an expression)
- anumber
- acharacter constant
- astring constant (can be the result of the concatenation of string field arguments
and literal strings)
- the following keywords: typedef, extern, static, auto, register, const, volatile,
_asm__and __inline__
- ado-while-zero construct
Can be turned to Off.
19.15 Precautions shall be taken in order to prevent the contents of a header file
: being included twice.
(required)

. Precautions shall be taken in order to prevent multiple inclusions.

Release 2007a+ 221/546
Revision 4.2 vA



Note: When a header file is formatted as follows:
#i f ndef <control macro>
#defi ne <control nmacro>
<cont ent s>
#endi f
It is assumed that precautions have been taken to prevent multiple inclusions. Otherwise, a
violation of this MISRA rule is detected.
Can be turned to Off.

Release 2007a+ 222/546
Revision 4.2 vA



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

5.3. Rules not checked

Category N. Type Description Comments

environment Not statically checkable unless the data
dynamic properties is taken into account

Multiple compilers and/or languages shall only be used if there is a It is a process rule method.

1.2 |required No reliance shall be placed on undefined or unspecified behaviour

1.3 frequired common defined interface standard for object code to which the
language/compilers/assemblers conform.

1.4 |required The compiler/linker/Identifiers (internal and external) shall not rely on [The documentation of compiler must be
significance of more than 31 characters. Furthermore the compiler/ checked.
linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

15 |advisory quating point implementations should comply with a defined floating Iﬁscizgugimgt;s%grggmggELrir;ujér?g by the
point standard. )

compiler
Language 2.4 |advisory Sections of code should not be “commented out” It might be some pseudo code or code that

extensions does not compile inside a comment.
documentation The documentation of compiler must be
checked. Error detection is based on undefined
3.1 Jrequired All usage of implementation-defined behaviour shall be documented. |behaviour, according to choices made for
implementation- defined constructions.
Documentation can not be checked.

. The character set and the corresponding encoding shall be The documentation of compiler must be
3.2 Jrequired
documented. checked.
3.3 Jadvisory [The implementation of integer division in the chosen compiler should [The documentation of compiler must be
be determined, documented and taken into account. checked.

3.4 Jrequired All uses of the #pragma directive shall be documented and explained. The documentation of compiler must be

checked.
. The implementation-defined behaviour and packing of bitfields shall  [The documentation of compiler must be
3.5 Jrequired . .
be documented if being relied upon. checked.
; All libraries used in production code shall be written to comply with the |The documentation of compiler must be
3.6 [required . . :
provisions of this document, and shall have been subject to checked.
appropriate validation. __
Release 2007aF /546

Revision 4.2 vA



Signed and unsigned char type shall be used only for the storage and

Consider an external function returning a char is
been used and increased. There is no mean

Types 6.2 [required [ . . . .
yp q use O_f ngmerlc_value_s . . without the functional knowledge that this
Note: this rule is partially implemented in Rule 6.1. .
function stores a character value or not.
A pointer parameter in a function prototype should be declared as Not statically checkable unless the pointer
16.7 Jadvisory pointer to const if the pointer is not used to modify the addressed analysis has been done.
Functions object.
. If a function returns error information, then that error information shall |Not statically checkable unless type defining
16.10 [required . .
be tested. error is standardized.
pointers and 171 |required Pointer arithmetic shall only be applied to pointers that address an Not statically checkable unless the pointer
arrays ' array or array element. analysis has been done
. Pointer subtraction shall only be applied to pointers that address Not statically checkable unless the pointer
17.2 |required -
elements of the same array. analysis has been done
173 |required >, >=, <, <=shall not be applied to pointer types except where Not statically checkable unless the pointer
' they point to the same array. analysis has been done
str_uctures and 18.2 [required An object shall not be assigned to an overlapping object. Not sta_ncally che_:ckgble unle_ss the data
unions dynamic properties is taken into account
18.3 [required IAn area of memory shall not be reused for unrelated purposes. "purpose" is functional design issue.
standard libraries | 20.3 [required The validity of values passed to library functions shall be checked. Not statically checkable unless all library

function are standardized

Release 2007a+
Revision 4.2 vA

224/546




PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6. Data Range Specifications

The PolySpace Data Range Specifications (DRS) is an easy to use module that helps developers
achieves external constraints on global variables without intrusion.
The associated option —data-range-specification <fi | enanme> option permits the setting of specific
data ranges for a list of given global variables. The point during the analysis at which the range is
applied to a variable is controlled by one of the following mode keyword: i ni t , per manent and
gl obal assert. The option is protected by a license.

. <filename> specificies the list global variables involved in the setting of specific data ranges

(See next section: “File format”).

. Only variables concerned by external linkage can benefit from the data range setting (See next
section: Variables scope).

Related subjects:
6.1. Fileformat

6.2. Variable scope
6.3. Reduce orangeswith DRS

Release 2007a+ 225/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

6.1. File format

Added to —data-range-specification option the file f i | enane contains a list of global variables with the

below format:
vari abl e_nane val _nin val _max <init|permanent| gl obal assert >

Keyword init: variable is assigned to specific range, only at initialisation and keeps it until

0

0

0

0

first write.

Keyword permanent: variable is permanently assigned to specific range. If the variable is
assigned outside the specified range during the program no warning is provided. Use the

gl obal assert mode if you need a warning.
Keyword gl obal assert : after each assignment an assert check is performed,

controlling the specified range. The assert check is also performed at global initialisation.

Values val _m n and val _nmax could be replaced by the keywords "m n" or "max" to
denote the minimum and maximum values of the variable type. Example for the long
type: min and max correspond to -2*31 and 2"31-1 respectively.

Hexadecimal values can be used: x 0x12 O0x100 init

Allowed column separators are: tab, comma, space or semi-column.

To insert comments use shell style “#”.

Example (x, y, z, w, array and v are the name of global variables):

Release 2007a+
Revision 4.2 vA

x 12 100 init # x is defined between [12;100] at
initialisation

y 0 10000 per manent # y is permanently defined between

[0, 1000] even any possible assignnent.

z 0 1 gl obal assert # z is checked in the range [0; 1] after
each assi gnment

W nmin max permanent # wis volatile and full range on its
decl arati on type

v 0 max gl obal assert # v is positive and checked after each
assi gnnent .

arrayOIlnt -10 20 init # Al cells are defined between [-10; 20]
at initialisation

sl.id O max init # sl.id is defined between [0; 2231-1] at
initialisation.
array.c2 mn 1 init # Al cells array[i].c2 are defined

between [-2731;1] at initialisation

226/546



Previous

PonSp

ace

TECHHNOLOGIES

Back to table of contents

6.2. Variable scope

Variables concern external linkage, const variables and defined variables. It could be extern variables with option -allow-undef-

variables.

Static variables are not concerned by this option. The following table summarizes possible uses:

init per manent gl obal assert jcomments

Integer Ok Ok Ok char, short,int,enuml ong and
| ong | ong

Reals Ok Ok Ok float, double and long double

\Volatile No effect OK Full range Only for integer and reals

Structure field Ok No effect Ok Only for integer and reals fields.

Structure field in array Ok No effect No effect Only when leaves are “integer” or
reals. Moreover the syntax is the
following: <array_name>.<field_name>

Array Ok Ok Ok Only for integer and reals

Pointer No effect No effect No effect

Union field No effect No effect No effect

Complete structure No effect No effect No effect

Array cell No effect No effect No effect Example: array[ 0], array[ 10]

Note that every variable and associated data range will be written in the log file at compilation time of a PolySpace analysis. If
PolySpace does not support the variable, a warning message is displayed.

Release 2007a+
Revision 4.2 vA

227/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.3. Reduce oranges with DRS

Related subjects:
6.3.1. Perform efficient module testing

6.3.2. Reduce oranges with the -data-r ange-specification option

Release 2007a+ 228/546
Revision 4.2 vA



PonSpace

TECHHOLOGIES

Previous Back to table of contents Next

6.3.1. Perform efficient module testing

The data-range-specification add-on can be used to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code. A module can be seen as a
black box having the following characteristic

* Input data are consumed

e  Output data are produced

» Constant calibrations are being used during black box execution influencing intermediate results

and output data.

The PolySpace feature enables the user to define
* What is the nominal range for input data
 What is the expected range for output data
* What is the generic specified range for calibrations

It allows making one unique static analysis and performing two simultaneous tasks
* answering the questions about robustness and reliability
» checking that the outputs are within the expected range, which is an expected result of applying
black-box tests to a module

In that context, several options have to be selected according to the type of data, whether they are input,
outputs, or calibrations.

Type of Data

DRS Effect on the results Why? Oranges Selectivity
mode
Input (entries) Reduces the number of Input data which are full
oranges, (compared with a [range with Desktop are - -
standard Desktop analysis) |[now set to a smaller ! !
per manent range with this option
Outputs Increases the number of More verification are
oranges introduced into the code,
which means more i =y
checks orange and
gl obal assert more green ones
Calibration Increases the number of Data which are constant
oranges, (compared with a |with Desktop are now
standard Desktop analysis) [set to a wider range with i T

this option
init

Now there is a derivate and specific usage of DRS which is to only focus on reducing oranges. A detailed
explanation on how that can be accomplished is given in the next section

Release 2007a+ 229/546

Revision 4.2 vA



y B HHOLOGIES
Previous Back to table of contents Next

6.3.2. Reduce oranges with the -data-range-specification option

When verifying worst case robustness with PolySpace Desktop, data inputs are set to their full range.
Therefore, every operation on these inputs, even a simple “one_input + 10” might produce an overflow,
as the range of one_input varies between the min and the max of the type.

By the use of DRS to restrict the range of “one- i nput ” to its real functional constraints found in the

specification, design documents or models — let’s say “one-input” can vary between 0 and 10 —
PolySpace will definitely know that

e “one_input + 100" will never overflow
* the results will be between 100 and 110

This not only suppresses the local overflow orange, but also injects more accuracy in the data which is
propagated through the rest of the code.

It removes the oranges located in the red circle below.

% of oranges

Oranges due to
complexity

Oranges due to
varnables set fo
full range

Size (lines of code)

* Why only on modules?
By removing the oranges introduced because data is set to it is worst case, the orange decreases
drastically, especially when used on units constituted of small files or modules. We would not explain in
this section why the number of orange due to complexity can largely and negatively destroy the

Release 2007a+ 230/546
Revision 4.2 vA



reduction of the number of oranges introduced thanks to DRS, as this is covered in the documentation,
both in “Why should there be an optimum size?” and “Considering the effects of application code size”

We will only explain here how DRS can reduce oranges on file or modules only.

 Example
Let’s prove it by considering a simple example. We’'ll suppose that the input called “My_ent ry” can

vary — in the real world — vary between 0 and 10. Two analysis can be performed; One with data-range-
specification (DRS), one without.

Without DRS With DRS — 2 oranges removed + return
statement more accurate

i | My entry; 1 My entry:

) 2

3 Function(veid) 3 Function (void)

4 4

g % 5 Hi

& Yy entry i g

~ 1; 7 = % + 1;

g #pragma Inspection 0 Fpragus In

L) return =;

9 return x; | :

1 l
 With “My_ent r y* being full range, the With“My_ent ry” being bounded to [O...
addition “+” is orange, 10], the addition “+” is green
* the result “x” is equal to all values between * the result “x” is equal to [100...110]
[Min+100 ... max] « Due to previous computations, x+1 can
* Due to previous computations, x+1 can here NOT overflow here, making the addition
overflow too, making the addition “+”orange. “+"green again.

And the returned result is between And the returned result is between [101... 111]

[Min+101... max]

B8 drs.Function. IPT. 6 E”E]g| B& drs.Function.IPT.6 [:HE”EJ

irn "drs.c" line 8 column 8 in "cr=s.c" line 8 column S
SaLUrce code SOLUrce code

e = - . T 3= = d= = o~
fpragma Inspection Folmnt

inspection point computed range: ingpection point computed range:
{-2**31+101<=Function:wec=2**31-1} {101<=Function:x=111}

Release 2007a+ 231/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7. PolySpace Model Link

The present section describes the usage of PolySpace for Model-Based Design. It contains the way to
launch a PolySpace C analysis from MATLAB/Simulink® associated to Target-Link, Embedded Coder

and Beacon code generators.

The PolySpace for Model-Based Design provides automatic error detection for code generated from
The MathWorks Simulink models. It consists of two principal components:

e A Simulink PolySpace library with associated blocks.

* A “Back to model” extension in the PolySpace Viewer that allows direct navigation
from a run-time error in the auto-generated code to the corresponding block in the
Simulink model.

Related subjects:
7.1. Getting started

7.2. Advance setup
7.3. PolySpace Utilities
7.4. Code Generator Specific Information

Release 2007a+ 232/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1. Getting started

This consists of several steps, all detailed in this section

. Create a Simulink model and generate production code (example in the getting started with
RTW-Embedded Coder)

. Start the PolySpace analysis

Related subjects:
7.1.1. Create a Simulink model and gener ate production code

7.1.2. Start the PolySpace analysis
7.1.3. Fix an error in the design and the Simulink model
7.1.4. Base wor kspace vs. PolySpace data ranges

Release 2007a+ 233/546
Revision 4.2 vA



PonSpace

TECHHOLOGIES

Previous Back to table of contents Next

7.1.1. Create a Simulink model and generate production code

« Open MATLAB, start Simulink, and create a Simulink model, similar as the one below

Ll my_first_code

In1
x D
Ot
Ina
Froduct
R 100%s odedS

Create the my_first_code model

. Use the model explorer to edit the current configuration and set it — for instance — to Embedded Coder

A(=e3

File Edit BUEEN Simulation Format  Tools  Help
| @ = = 4| =2 )

v Toolbar

v Shatus Bar
Model Browser Options =
Block Data Tips Options  »

I Library Browser

Madel Explorer —b{I}

MATLAE Desktop Huti

Open the model explorer

Release 2007a+ 234/546
Revision 4.2 vA



. Set the System target file to Real Time Workshop Embedded Coder: ert.tlc

ES Model Explorer

Ele Edt View Took 4dd Hep
D sma@mx B

B FfFisr® On 4R

Seatch | by Mars w | Bamer [[&] Seach
Model Hierarchy ||| Contents of: my._frst_code/Canfiguration Real Time Warkshop
= 35"'}"* Fiook e SiopTime Savelulpud ProdHwDevics | Genersl | Commerts | Symbok | CustomCode | Debug |«
EE“:WF::“ @ Sobve 100 T aipet aeluchor
= My st Dt Impodt/Espoit =3
B Model Workispace :Umm L Sislann baged e et He || Bnowss..
R Corbguation Bctivel || oy Diagraics Langusge: c ¥
Code foe me_frst_code
&' 8 Haedwae inpla. b Gereanc TR

P Advice formy_fesl_code | | @0 el B adersncing O
Geresabe HTML report

1L msrer s rososont A st sl
LOndE L 5Lt T Y — !

Change the code generator to Embedded Coder

W System target file browser: my_first_code

System target file: Drezcnplion;

lasap2.tlc ASAM-ASAP? Data Defira|
tlc Real-Tin= Uorkzhop E
sEle REeal-Timne Workshop En
tlc F=al-Tim= Vorkshop Ex
.tle Vizual CAC++ Project

grt.tlc Generic Real-Time Tar

grt.tlc Visual CrCe++ Project

grt_malloc. tlc Generic Real-Time Tar

grt_malloc. tlc Visual CAC++ Froject |

£

Full name: C:AMAT LABSR 2006b b chertheart o

Template make fle: ert_defaull_tmf

Make command  make_rbw

Lo

Jl Cocdl ]|

. Enable the generation of html reports, and turn ‘Include hyperlinks to model’ on

ES Model Explorer

Fle Edt View Toolr add Help
D il EN<s%Fiaod B 4R
Search | by Hars | Mo | E]' Seanch
Mode] Hisstarchy Condarts o iy tesl_codde/Corfinantes | Floal-Time Woikshop
= RS, Aot e Gerwtsl | Comments | Symbols | CustomCode | Debug | Inbedace | CodeSise | Te 8
gE‘a::Wc‘:t;wce & Sobver Tapgen pebechn
= Ny fnk P Daial "-E
1§ Moded Workspace : D:.:r-:'.aﬁm ais System target fike: et e Biowsa
£ Conhgus stion [Active] @ Disgroatics Larguage C w
ﬁ.l:pdpfcrrrg,r_ﬁ'u_wﬁu & Haidwars Imolamentation Drezcriptaon Feal-Tima Work shop Embedded Codes jno suto conhgurstion]
H
Ao b my_fest ,
¢ myfesl code || @ Model Rsterercing LR
= RpalTme Workihop e
[ | Gersrate HTML sepon)
[F] Laumch report saomatcaly
Inchude Fyperfinks 1o maoded
Hosled pibsrde =
Detail of the model explorer, enabling html generation
Release 2007a+ 235/546

Revision 4.2 vA



. Gointo the “Solver” page, and set the solver to fixed step, and the solver (for this demo) to discrete

F5 Mode! Explorer

Ele Ecit Miew Took fdd Help
OF imAax EIN€E%f 00 DR 4R
 Smarch | by Hams v Hame (& Seach
Model Husrarchy Contets of: my_lesl_code/Configuatay | Solver
= B Sk Flog Name SGienaadation e
B Base Wodkapace & Sove Stast v 100 Siop times | 10.0
= [imy_frst_code® & Data Import/Espent ' o
Corfiguiston [Actve] & Disgnostic | I ket B e Rt
ﬁ&dﬂhw‘mh‘:ﬂ & Haduae Isrrpbm:rm'm Typec, Fi n — Rl TR chencosia bnn Condroous stabes|
& Aubvice los my_fist_code & Model Fieferencing Pénods: sample e constisnt Unconstared e
& Fesh Time Wokshop Feond-siop sizs [lurdamental somple Gmel | sto
Takirsg mode lor patcde tamgls tmes | dutn w

Choose fixed-step type

. Disable “generate an example of main program”

Eo Model Explarer

Fle Edt Miew Tock Add Helo
O i@ xX BN Fidr@ DR 4R
Semch |ty Name » Hame: | | (@] Seech
Modsi Hiesarchy Conienty of my_frst_cods_other_corfi; | Aeal T Workshop _
= EffSnmdek Floo Marres Stoplime Save | Comments | Spmbols | CustomCode | Debug | Ineface | CodeSike | Tewplwes | 4» ©
| ;ﬂ‘“:w‘:::’“m & Schve 100 Code templates '
= | r.|.l_ ] _I:"II:‘IIHS'
B Model Warkspace : E:"IWIEMI B Senen i [ ) loplate |wil_code_temelale cot | Biowes. || Ed. |
RaConbgurstion (hctivel || @ pisrantics Heasdei Hs [ ] ismrplals: |sil_code_lemplale oot [ Biowse. || Ed. |
iy cthes obved B Hardwane brgle
g:ﬂ'ﬂmlm & Hodel Relencing Desta lemplales
Ciesche Pt rmgy_fired_cooede_oo Bl Tiemes Wil
$ Auiicn for g, fuet_pock | L L/ . Soumce e [*.c] bamplate .l:l‘t_l:'\:'ﬂ'hjwﬁﬂtcﬁ |-B|wmr. | E&. |
Hedes Fle {* b tomplaie: eri_code_lemglate cgt | Browse. || Ed. |
Cuestom lemmgsabe
Fils custboenzation templste: exsmples e pencess tic | Biowee. || Ed. |
[[] Gersrate an exampls s piogram
Template tab in the model explorer
. Enable “suppress error status” in the “Interface panel”
Release 2007a+ 236/546

Revision 4.2 vA



5 Madel Explorer

Ede Edt Mwew Took Add Help

D sl X EEN%HF {00 Mo 4R

Sparch: by Hame | Hame: | [ E Seaich
Model Hisarchy | Conterts o my_first_code/Configuratior | Real-Time Workshop
= EfSmibek Roct " Name | Swoplew Save 'sbug | lnisfoce | CodeSie | Tempister | DataFlacemert | Dala Type Rieplacemert | ©
zﬂh:'.l":'::m & Soheer 100 Soltware ernionenend
= BTy NE_code" & Data brpot/E =
1 Model Wik space a Bﬂ:mm bt T aiget fostreg pord math srvanorement CE3/C30 (AM51)
#58y Conhguration [Acirve] & Disgrssiics Uity Punchon géneishon Ao "
# g Code for my_fust_code & Hordwans Ingle Support: [#] Poatingsposd rumbers [+ mondfirie rumbes [#] compes numbers
?Mﬂlb‘ﬂﬂ_ll‘!r_ﬁ-i! & Modsl Rataenansg [] sbeohie time [] cortramo tme [] ronciniined 5-functions
EEIPobSpace for RTW Emb | @y Bk Tine Wk
[EH0pen PolSpace Rt Code inimface
[[] GRT compatitis cal mbeelace [ Snole culpul/update funchion [2] Temsnats funclion e
[] Gersesale reusabile code
Suppiess eool slatuy i cealime model dats shuchae
Wesication
— - - r N —_— - *
| s @ 2
£ ¥| Lol | Seatch Feulty Henver I Help |[ ek ]
i X
Interface tab in the model explorer
Hit apply, and generate the production code
Release 2007a+ 237/546

Revision 4.2 vA



y E{ HHOLOGIES
Previous Back to table of contents Next

7.1.2. Start the PolySpace analysis
« Open the Simulink library browser
. Locate PolySpace and expand it
The Simulink Library Browser is updated with the PolySpace Library during the installation process.

The library contains a common part called PolySpace Ultilities, and sections for each of the installed
code generators called PolySpace For “Code Generator” (see figure).

[ simulink Library Browser =10] x|

File Edit View Help

(13 - @ |
| PolySpace for RTW Embedded Coder: Allow to launch PolySpace analysis according to the :I
= Bl PolySpace F2 PolySpace for RTW Embedded
. gl PolySpace for Beacon Coder
! J PolySpace for RTW Embedded Coder J
----- J PolySpace for Targetlink

. .5 PolySpace Utilities
[EIEJ Real-Time Workshop |

Ready i

Simulink Library Browser

. Drag and drop the “PolySpace for Embedded Coder” box

To perform an analysis of your code using the default settings drag the PolySpace for “Code
Generator” block into the subsystem which is going to be analyzed. If the code for the subsystem has

not been generated already, generate the code first. Then double click on the PolySpace for “Code
Generator” block.

Release 2007a+

238/546
Revision 4.2 vA



) my_first_code El@lrgl

Fle Edt Wew Smulstion Format Tools  Help
D& BB == 4 |22 )
COO—»
Ini
% 1}
Ot
(2 _p——pr
In2
Fradine
F 100%, Tei, 00 FouedstepDiscrete ]

Simulink model with PolySpace launching block

« Double-click on it

The PolySpace Analyzer Panel will then be displayed. Click on the “St ar t ” button to start the analysis.

Note the subsystem field is automatically populated with the name of the current subsystem and the
results directory is automatically set to results "subsyst em nane”. If more than one subsystem is

present in the model a subsystem selection dialog will be presented.

Release 2007a+

239/546
Revision 4.2 vA



-} PolySpace Analyser

¢ Anahyzis Parametérs

Subsystem my first_code | Browse | |FrnmEEle,:tbn]

Resulls directory  CWATLABNWR200EL wworkigetting_startedvesulls my first ¢ | Browse

Analysis Precision 02 - defaul  w

- Advanced

[[] Enabls addtional file kst | Select Fiss

[] Remote anatysis

Desitop anahysis

=
PolySpace

Analysis Parameters dialog

A few messages will be displayed in the main MATLAB Command window:

### Pol ySpace Technol ogi es RTW Enbedded Coder integration
### Version 1.4
### Preparing anal ysis
### Locating generated source files:

ert_main.c ok (c:\MatLAB704\t ool box\rtw rtwdenos
\rtwdeno_exanpl enai n_ert_rtw)

rtwdeno_exanpl emai n. ¢ ok (c:\ Mt LAB704\t ool box\rtw\ rtwdenos
\rtwdeno_exanpl enai n_ert_rtw)
### Cenerating DRS table

### Get Paraneters

### CGet Signals
### Starting anal ysis

The exact messages that appear depend on the code generator being used. However all the
integrations follow same format:

. First the name of code generator is displayed and then, the version of the plug-in.

. Following this, is a list of source files, and finally the DRS (Data Range Specification)
information.

Click on Execute to proceed. The progress of the analysis can be followed in the MATLAB Command
window and later using the PolySpace Spooler if remote launching has been enabled.

Release 2007a+ 240/546
Revision 4.2 vA



Note that you can expect around 7 minutes for this model, i.e. for 4 lines of generated C code. You can
also count one hour for a 3000 block model, and 15 minutes for 2000 lines of generated code. It's not
proportional, and these seven minutes is the entry ticket to almost any analysis.

Release 2007a+ 241/546
Revision 4.2 vA



y Qﬁ HMOLOGIES
Previous Back to table of contents Next

7.1.3. Fix an error in the design and the Simulink model

After approximately 10 minutes, we have now some results to look at. We'll browse the results thanks to the
PolySpace Viewer.

The PolySpace Viewer allows easy navigation with a right click to block in the Simulink model. Drag the “Open
PolySpace Results” block from the Simulink PolySpace Utilities library.

=1 Simulink Library Browser
File Edit Wiew Help

O & 4 dh |

[I'pe'n : Puljlﬁ pacé Results: Allow tu:u-|:||':|'er"| F';ﬁII_I,IIS' pén:é' ;ahél_l,lsis- results.

- T Sirnulink

E_l PolySpace s ED pen PolySpace Results
e E PolySpace For Beacon
E PolySpace For RTW Embedded O CIRA Bty

o e | PolwSpace Enable COM
Server

y PolySpace For TargetLink
L y PolySpace Ltilities i FolySpace Menu
i+ B Real-Time Warkshop I

+ W Real-Time Workshop Embedded Code e e | PolwSpace Project
Configuration

+- W Simulink Extras —
{-
Ready

Simulink library browser, section PolySpace utilities

...into the model and then double click block. This will start the PolySpace viewer with the appropriate results

Release 2007a+ 242/546
Revision 4.2 vA



W my_first_code |
Ele Edit View Smulation Formab Tools Help

DoEd&S P | &= |22 )

Open PolySpace
Results

In
x|
Dt
Ind
Feoduet
F1100%% {T=0,00 FixedshepDicrats r.

Details of the PolySpace Viewer icon in Simulink

After 10-30 seconds, depending on the PC, the PolySpace Viewer will open, as shown below.

—pobngace Mo ¢

PonSpace

TECHNOLOGIES

|"--|.|.l|| wilh

EI'E

q 1]

m'l'nﬁlqtl o TETITIE

Screen shot of PolySpace Viewer

The mode of operation chosen in the case of this example is not important. Indeed there are few orange that we
will all review.

If you have enabled Remote Launching of the analysis you will need to download your results from the server first
using the PolySpace Spooler. The tool will prompt you to do this if this has not already been done. Click on CTRL-

N to go to the next error

Release 2007a+ 243/546
Revision 4.2 vA



._-"-hffi;:.nr Viewer - Tl TSR HDOE ' Wigge i b aiarie deesulia_my_flmi_cede\HTL pe 02 my_ (el _code pelppe. = F:E

Pl [ Toolr Wrdes: el

; o A wn 0§ o mpay B Cems U

o pe HL OER o o omey om owe M0 owe WP oam o omm o e v

[

w_firsl_code my_first_rode siep
31 pry ST Coe Ay ATST_rode L)
# ey _Rirsl_fooe mry_ReE]_fooe W
# __pohyapate__sioshos erng

= R 30
21 ¢ Medel stép funcEicen "/
22 void my_first_code_steplveid]
23 I
24 /7 Qutpert; "4Reet>/0utl’ incorporates;
25 * Inport: "ZRect>/Inl"
=8 " InperTE: "<RooEx/InZ"
z7 *  Freduct: "LRoot>/Product”
28 i
28 ny firet code ¥, Outl = my first code O inl my ilrwh code U, Incr
30 ]
31
1z #* Model initialize functien */
33 woid wy_first_code_initialize (veid)
34 I
oL I Mo md e cialad b mwde wd i

] rrey_Birkd_cosde o

Detail of an orange check in PolySpace Viewer

Click on the orange PolySpace diagnostic: we have here an overflow of the two entries. PolySpace assumes that
the values for entries are f.ull range, and their multiplication can overflow.

B my_first_code.my first_code_step LKIVFL.1

“rivf sl i 20 ey 0 obiLmn 45

It is now time to get back to the model to understand what should be fixed. Searching and clicking on the first

Overflow in the code

underlined blue HTML link near the check in the Source Code View will open the Simulink model and highlight the
block with the error. It looks like something equivalentto “/ * ‘<Root>/Product’.

Release 2007a+
Revision 4.2 vA

244/546



1=} my_first_code
Ble Edt Yew Smustion Fgrmat Jook  Help
DS B == 1|22

Open PolySpace
Fazulis

F 1005 T=0,00 FlosdStapDr ste 2 |

Model with a highlighted block

It is now up to the developer to fix his defect in his model. For instance, he may come to one of the following
conclusions:

It is a bug in the design. The developer should saturate the output, providing this functionally makes sense
bound the entries in the model, by adding blocks which will test the input values, and bound them

accordingly.
It's a bug in the specifications. The developer should bound the entries, by giving them a range in Simulink

that PolySpace can take the ranges into account and turns the code green.

Release 2007a+ 245/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.4. Base workspace vs. PolySpace data ranges

After having browsed a model, the developer has identified a block whose signal ranges is not the
expected one.

. Ifits block is supposed to be robust against this range, it is a design bug. Should the previous
block be saturated? Should the signal be bounded with a “switch” block? It is up to the
developer to decide the appropriate change in the model

. If the range is an input range of the model, the developer may wish to give this information to
Simulink, so that PolySpace tools can use that range as an entry.

Prerequisites: have signals as ExportedGlobal.

W Signal Properties: my_entry1

Signal name: Em_l,l_entrj-,l-:I

[ ] Signal name must rezolve to Simulink zignal object

Logging and accesszibility | Real-Time Warkshop | Documentation

|HT"'.-".-" storage clazs: wportedGlobal

RTw storage hpe quallfler

Details of a signal

Related subjects:
7.1.4.1. Update range of signals

7.1.4.2. Re-Gener ate code and launch again the PolySpace analysis

Release 2007a+ 246/546
Revision 4.2 vA



PonSpace

Previous

TECHHOLOGIES

Back to table of contents

7.1.4.1. Update range of signals

. Open the “model explorer”, and go into the “Base Workspace” tab

. Create asignal “ny_entryl”&"“ny_entry2”

. Bounditto -15 to 15. Specify its storage class to Export edd obal

E5 Model Explarer

Fho Ect View Took &dd Heb
D sBX BEH=E%EfFsdod DB 45
Senteh |by M | M arme: E‘ Seanch
Model Hiemchy Conterts of Bass Workipace Simulink. Signal my_cntry]
= EffSimudek: Aot Name Vahue Datalype Dofatipe | td | Units A
T Baee Wodkspace E oy el Perey Dimenisions: -1 Complmaty, | auto e
= Wmy_fret_cods_bounded Stk tima: -1 Sl ok | sl .
oo Wokapace T Muwimm 15
%Cmmlﬁw\-‘ul s
§ Code for my_first_code_b v
~§. Avics for my st cods | Cisthy uariess btacory opdiond
] Open PolpSpace Reuts Stornge clazs | EvportedGlobal b
FHPokEpace f ATW Emb Fyee
= s - #
p 3| | Contenis | Sesmch Resuls Bevet || Hee || soob |

Signal in the “Base Wbr kspace”

. Model with signals on entries:

Release 2007a+
Revision 4.2 vA

W my_first_code_bounded

Ee Edk Vew GSimulstbon Format Tools  Help
O EEH& ¢ @B &= ¢ | 20| p 5 100 |[Nomd =] 0O
FRagults
O ™
I
x —(_1 )
Diutt
@m—"
= ey
Pradisct
Resady 00 [T=0.00 FixedstepDiscrate

Model with signals my_entryl and my_entry2 as “ExportedGlobal”.

247/546



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.1.4.2. Re-Generate code and launch again the PolySpace analysis

Re-generate the code
The entries are no longer part of a structure, they are separated global each.

L) Real-Time Workshop Report

-~ -
1% F* Erternal ocubtputs (root outports fed by signals with aut
Back Forward . 2 5
z ExternalOutpucs my first codes b my firsc_code_bounded ¥:
Contents /4 Model step Fanction =/
d my firstc code boundesd step (vold)
g _ voi Ly o | %
Summary 24 {
Eemove hughlighting /* Outport: '<Root>/Dutl' incorporates:
Subsystems : * Inport: '<ZRoot>/Tnil'
Cod " # Tnport: "<Roob>/In2’
= QUE AR , ke
s 28 . Product: "<Root>/ Product
Code reuse excephions = Y,
Generated Source Files 3 my_Tirat_cods _bounded Y.O0url = my enteyl ® my entryd:
pny first code bounded g i 3
autobuld h S* Model amatiralize funclbion */
oy first code houndedh - 54 wold my firsat code bounded initialicze (void) i
< ¥ £ >

l K ” Lancel ” Help ] Sppty

Html report generator from Embedded Coder

. double-click on the PolySpace box: -

« Update the results folder name, and setitto “resul ts_ny_first_code_bounded”
. Update the subsystem name, and setittony_first_code_bounded

Start again the PolySpace analysis

Release 2007a+ 248/546
Revision 4.2 vA



4 Poly5space Analyser

= -} Select Subsystem
Arsabyzis Paramisbars i
SUbsYSem  my_first_cose_bourked [ Erﬂwu—}_b‘_uaﬁa_.
fﬁﬁ__“m
Resilts drectory 20050 workipetling_stamedvesulsfy _frst_ooos_boundesd
g e
Anabysis Precision 02 - dafall
r Advanced
b
[ Erable addtionsl fie ist Project Contiguration | Conign] g
[] Remote: snabysis g
[] Deskbop anabysis
L. 0K I Carcel I |rrms:e-|u:m-||
-
PolySpace m P eion

Details of the results folder

. Start the analysis: “

Check the obtained reliability of the model thanks to PolySpace Viewer

Open FalySpace
Reszults
Open the PolySpace Viewer by double-clicking on the icon

™ my_first_code_bounded

File Edit Wiew Simulation Faormat Tools Help

[ : HES iR E =

Open PaolySpace
Results

-

Froduct

100% . FixedStepDiscrete
Model with a PolySpace viewer menu

Let's have a closer look at the generated files in the PolySpace Viewer

Release 2007a+ 249/546
Revision 4.2 vA



= W i W B ow 1 - *..:.'. Fighs| Beis s Fifar e
if"x:.-""‘f oae mw O BE o oom e owe o me BY e R s o ommom owm owe
¥ e
i BEmy_first_code_bounded.c E Eir?’
§5 my_frst_coce =
HabE_fT J* Hodel =tep function *F
first_code | vold my first code bounded stepiveid)
_init_globalg '
f* gutport: T<Rect>/Outl? incorporates:
B my_frst_cod * Inport: "<Reot>/Inl'
= [iry_First = Inpert: "s<Root>/Ind'
o = Product: "LBasat>) Producse’ 1l
- B ™
my first code bounded ¥.0utl = my antryl
' Pl i
my_first_cog
s _polyspace_| /* Hodel initislize functioen =/
void my first _code bounded initialize (veid)
|
f* Registration code *fF
f2 axrarnal inouots =/ s
< > -
[ rrw_fwar_code_bounded.e

Detail of generated files viewed in PolySpace Viewer
It is all green. The code confirms that no Run Time Error is present in the model.

Can we find more bugs in that Model?

. To answer this question, we need to now more about the tool
«  Which windows of PolySpace Viewer contain which information?

« Which Colors hide which messages?

. How to find bugs thanks to PolySpace Viewer?
. Please refer to the “Results review” section of this documentation

Release 2007a+
Revision 4.2 vA

250/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.2. Advance setup

Related subjects:
7.2.1. Hand written code

7.2.2. Target production environnement
7.2.3. Template of PolySpace configuration file
7.2.4. Using the PolySpace boxes available in the Simulink library

Release 2007a+ 251/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.2.1. Hand written code

Files such as S-function wrappers are — by default — not part of the PolySpace analysis. They should

be added manually.

When starting the PolySpace analysis , you need to browse and add c-files to
your analysis

} PolySpace Analyser E|@E|

- Analysis Parameters

Subsystem .m”d_ywﬂen_gnde | Brovwse | [FramSeiwtim|

Results directory E‘.'IMATLAE'ﬂEDIIrhIwarkhw_miﬁm'wesuﬁs_rmd_wrﬁtei Brovwse

Analysis Precision 02 - defautt

Advanced -

[[] Enable additionsl file it | Select Files

Remote analysis

Deskiop analysis

Pdepﬁsze_

Additional file selection is made by ticking “Enabl e addi tional file |ist”andthen, by clicking
on “Sel ect Fil es”. A C File browser appears to add files to the PolySpace analysis.

Release 2007a+ 252/546
Revision 4.2 vA



* Additional Files

Adatonal Files To Araliie

Select the appropriate c file and then start the analysis.

Release 2007a+
Revision 4.2 vA

253/546



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.2.2. Target production environnement

In Simulink, you need to configure the target and cross-compiler specificities. These parameters at least include
Size of the types for char, short, int (see Hardware implementation of the nodel expl orer)

5y Configuration Parameters: hand_written_code/Configuration (Active)

| S alact: Embedded hardwars [smulation and code gereration) i
Sobver Device tvpe: Unzpectied lassumes 32-bat thﬁi;:'] w
D ata Irnpeoat/E wpeoat L _ B . { ; g "
Optimization Number of bats: char: ,» : shl:nrl 1 b _ ik _ci?
5 Diagnostics long: 32 | niative wand size: 3
":I"!-I'I'ﬂ:lh Time E# ﬂdﬂ“ﬂ- | Y '_ =i -_-_‘.
Data ' ahdity
Signed nteges dni aunds | Underm-d
Type Corvetsion o ol Lo
EDﬂ.I"h!l:“li'-'i_I,' Shuft fight I_"l'\l_..q."_""'"l.l__j_l..__ hrmebc sl
Compahbibity
Muodel Referencing Emulation haidware [code generation only]
None -
Model Refersncing

Target selection in MATLAB

Cross compiler flag (-D), and library include (-1), implicitly defined when — for instance — the cross compiler is setup
via the “mex —setup” command

Release 2007a+ 254/546
Revision 4.2 vA



‘Command Window

> mEX =seLup

Flease chooze your compiler for building external interface [(MEX) files:
Would you like mex co locate installed compilers [v]/n?

Select a compiler:

[1] Lo € wversion 2.49.1 in C:\MATLAB\RzZ006b\=sy=\ locc

[2] Microsoft Visual C/C4+4 wversion 6.0 in C:\Program Files'\MHicrosoft Visual S
[0] None

Compiler: 1

Fleaze wverify your cholices:

Compiler: Lee C 2£.49.1
Location: C:YMATLAB\RZOD&b\=yallce

Are these correct?([v]/n):

Trying to update options file: C:\Documents and Sectings\Marc Laleo)Applicatic
From template: CiVMATLAB\A R2006b\bin\ win3Z\mexopts\ lecopts.bac

Done .

}}l

Cross compiler settings in MATLAB
PolySpace settings work exactly the same way, you will need to perform the following tasks (they will be detailed
step by step in the next paragraphs)
. define the same parameters for your cross compiler and target
. save this in a template PolySpace configuration file & set this template to be the default configuration file for
every PolySpace analysis
Why does this matter?
. For the PolySpace, an overflow on an integer type does not mean the same when the size of an integer is
16 bits or 32 bits.
. PolySpace needs the cross compiler header files, as they contain definitions of types, macros, used by the
application, whether the application made of generated code or hand written code.

For more information, please refer to the “Analysis setup” and “Options description” sections of this

documentation

Release 2007a+ 255/546
Revision 4.2 vA



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

7.2.3. Template of PolySpace configuration file

In the Simulink library browser, locate the PolySpace library, and expand it.

X o

sl i

o condpae PobSpace aralen Pabiipas

Lol Myny
oo f— D)
Dstl
L el

I:Iu-n PolyS pacn Floous 3
F‘d_'ﬁpai:-! [Enabia COM el

Sy
e

Falgfpite Figpa

E Poly3oace Proec L e

i akean

.54 Hhi hoOA ik & ndde] b0 insart e PollySpacs Drn_pni:w-_;.rmml_
I

FPalySpace Project
Canfiguratian
The PolySpace project configuration in Simulink is represented by the following icon . After

having drag and drop it in the Simulink model, and double click on it: this will bring a pop-up window. Select the first
template in the list

J Configuring default options

Pleaze zelect a template configuration file ;

PO i'é'r'":iifii ...........................................................
tetmplateTargetLink cfy
templateBeacon.cfg

[ (] ] [ Cancel

Template selection

This will open the PolySpace interface to customize the target and cross compiler

Release 2007a+ 256/546
Revision 4.2 vA



-] PolySpace Verifier for C - C:\MATLAB\R2006bWork\my cross_crompiler-polyspace.cfg

Search inbernal name from the selected ine

Value Irternal name

i= TargetConmpiler )
Targel processor type SHArc oo |FhEr et
Operating system target for PolySpace stubs _[no-predefined-OS _ -OS-target
Dafined Preprocessor Macros kD
_____Undefined Preprocessar Macros ﬂ:l?.!J
Ircliace CoMATLABRZEDER Evaslccinchude: D-iﬁnluﬂ&
Include Directories .k
Commandiecripl to apply to preprocessed files E[:]-pmt-mpmc!sshg-mmmd
# Compkance with standaris | |
# PolySpace inner settings
1 Precision/Scaling

Target and cross compiler settings in PolySpace tools

The “target” option defined the size of types. Custom target can also be configured, by selecting “mcpu (advanced)”
at the bellow of the drop-down list

Cross compiler settings can be configured by clicking on the “-D” options

18Tget processor type |sparc ... JIArget
Operating system target for PolySpace stubs  [no-predefined-0S v LOS darget
‘efined Preprocessor Macros || | MATLAB MEX FILE L. o
Urdlefined Preprocessor Macros [TIT-LI

Note that MATLAB_MEX FI LE is a directive option that is needed when the | cc cross-compiler is specified.

Defining templates can be use in all subsequent analysis.
This configuration file needs to be saved and set as a template for all subsequent analysis. The step by step
procedure is the following:
. Save the file and close the interface.
Copy the file in <<mat | abr oot >>/ pol yspace/ cf g directory

2.

3. Renameitinny_cross_conpil er.cfg (Itcould be any other name).

4. Type in the MATLAB command window: Pol ySpaceSet Tenpl at eCFGFi | e(' C: \ MATLAB\ R2006b
\ pol yspace\cfg\ny_cross_conpiler.cfg')

=) Command Window r._|rﬁ|g|
File Edt Debug Desktop Window Help u
*»> PolySpaceSetTemplateCFGFile (' C:\MATLAR\ RZ006bY polyapaceh n:f-:_rﬂn?_r_'rnss_r_'nmp ilar.cfg')

[S—

Create a template configuration file

Release 2007a+ 257/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

7.2.4. Using the PolySpace boxes available in the Simulink library

The PolySpace Viewer allows easy navigation with a right click to block in the Simulink model.

Drag the “Open PolySpace Results” block from the Simulink PolySpace Utilities library into the model
and then double click block. This will start a new session of MATLAB in automation mode, open the
model and start the viewer.

You can chose the Methodological assistant to review all colors in the Viewer by selecting the
“Assistant” mode. The “Back to model” consists in searching the above close relative HTML link which
will open the Simulink model and highlight the block with the error.

Important note: If you have enabled Remote Launching of the analysis you will need to download your
results from the server first using the PolySpace Spooler. The tool will prompt you to do this if this has
not already been done.

Release 2007a+ 258/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.3. PolySpace Utilities

The PolySpace Utilities section consists of four blocks:

. “Open Pol ySpace Results”
2. “Pol ySpace Enabl e COM Server”. This block is called by default with the “Open PolySpace

Results” block. This block is mandatory when The PolySpace Viewer has been opened outside
a MATLAB/Simulink session to enable the feature “Back To Model” inside the Viewer.
3. “Pol ySpace Menu”
4. “Pol ySpace Project Configuration”
They can either be run directly from the Simulink library browser or dragged into a Simulink model (see

next figure).

[ZISimulink Library Browser
E__i_le _EI_:Iit hig _H__glp

O & = ¢k |
I':"ul'_l,'lSI i:rac:e Enable COM Server: Enable Matlab automation made for the

current session.
“wharning © it can be uzed only with a Matlab releaze B14 SP2 or higher.

=T Simu.iir'ilé
] % PolySpace Open PolySpace Results
- PalySpace for Beacon
# PalySpace for RTW Embedded ' F""' pace Enable COM Server
| PolySpace for Targetlink

#] PolySpace Utilities PolySpace Menu
+- @ Real-Time warkshop
+- 1B Real-Time Warkshop Embedded © s PolyS pace Project Configuration
+ B Sirmulink Extras
B Stateflow
+- W@ dSPACE TargetLink comman block |
+. W dSPACE TargetLink multirate block |

Ready

PolySpace Utilities

Release 2007a+ 259/546
Revision 4.2 vA



Related subjects:
7.3.1. Open PolySpace Results

7.3.2. PolySpace Menu

7.3.3. PolySpace Configuration

7.3.4. Archivesfiles produced for the PolySpace analysis

7.3.5. PolySpace commands available in batch mode as m-functions

Release 2007a+ 260/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.1. Open PolySpace Results

This option allows the results of the PolySpace analysis to be viewed and easy navigation with a right
click from the PolySpace results to an element in the Simulink model.

Release 2007a+ 261/546
Revision 4.2 vA



PolyS ace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.2. PolySpace Menu

The menu consists of two sections, the first for managing the analysis and the second for configuring
the tools and documentation.

_Ioix]
|

PolySpace Help

Tanolz & Documentation

=top local analysis Help (pdf)

Configure project PaolySpace web site

Dpen results

Launch spooler [V Dont uze automatic stubs

v Dont check solver

PolySpace Menu

Analysis Management

« “Stop |l ocal analysis”will stop an analysis running on the local machine. If the analysis
has been remotely spooled this option will only work during the compilation phase before the
analysis is sent to the server. However, you can use the “Launch spooler” button and stop the
analysis from the spooler dialog.

“Confi gure project” starts the PolySpace configuration dialog, for more information see
next section.

“Open resul t s” opens the PolySpace Viewer with the last available results. If the analysis
has been done on the server, downloading them first is required before clicking on this button. It
is recommended to not change the proposed directory during download.

“Launch spool er” starts the PolySpace spooler. See “Getting Started section”.

Tools & Documentation

Release 2007a+ 262/546
Revision 4.2 vA



« ‘“Hel p (pdf)” starts Acrobat with the PolySpace for C Documentation.

“Pol ySpace Wb Site” launches a web browser with PolySpace home page, where the
Customer Centre can be accessed.

General options

e The“Don’t use automatic stubs”tick box enables/disables PolySpace automatic
stubbing of certain blocks behaviour. This behaviour depends on the code generator being used
and is described in the documentation specific to your code generator below.

« The“Don’t check sol ver” option disables the check of the solver used with Real-Time
Workshop® Embedded Coder.

Release 2007a+

263/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.3. PolySpace Configuration
Clicking on “Project configuration” starts a cut-down PolySpace launcher (see next figure).

Next figure allows the configuration of the PolySpace project. For example setting items such as the
processor type the code has been generated for, Compilation flags etc. The first time the tool is run a
template configuration is created with the following options set:

-voa

-continue-with-red-error

-continue-with-existing-host

-ignore-float-rounding

-OS-target no-predefined-OS

-allow-ptr-arith-on-struct

-results-dir results

Other options are automatically set depending on the code generator being used. See the documentation
for specific code generators below for more information.

H PolySpace Verifier for C - c\clients\beacon\cummins_working_Sept21\source 0] x|
| W
=earch internal name from the selected ling : ,@ | [:g?
Mame Wallue Internal hame

A ralysis options ;|
I.J—:I—General

—=eszion identifier Polv=paceToolsLib Salals

—Diate 23/09,2005 _clate

—Author El] -authar

—Project version 1.0 Lyerif-version

xamine effects of scalar azsighments IF el

—Heep all intermediste files B -keep-all-files

—Continue even if red errors are detected [ -cortinue-with-red-errar g

—Continue with the current configuration ] -cortinue-with-gxisting-host
FH-TargetiCompiler
u:urnr:uliann:e with standards ll

Set parameter ...

Project Configuration Interface

Release 2007a+

264/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.4. Archives files produced for the PolySpace analysis

For further information, here is a list of files used during a PolySpace analysis:
. Template files located in ‘MATLAB installation directory’ \ pol yspace\

When an analysis is first performed the tool copies the following two files into the local model
directory. On subsequent analyses the files are not copied again meaning it is ok to model the
copies in the model directory.
o cfg\tenpl at eEnbeddedCoder. cfg
This file is copied to the ‘model_directory’/’'model_name’-polyspace.cfg at the start of the
first analysis of the model. It contains the template PolySpace configuration settings to
support the TargetLink code generator. The templateTargetLink.cfg file can be updated
with site specific settings, to ease analysis of new models.
A MATLAB command exists to change the name/location of the file which contains the
template configuration:
Pol ySpaceSet Tenpl at eCFGFi | e(config_fil enane)
This is most useful when the PolySpace analysis is started as part of an automated
process. Here the process would set the template configuration file to use, erase the local
copy in the model directory and then start the PolySpace analysis.
o stub\ppcom ec. sh
This file is copied to the ‘nodel _directory’/’ ppcom ec. sh at the start of the first

analysis of a model. The file is not recopied for subsequent analyses. It is used to
stubbing of lookup tables (only of interpolation, not extrapolation) types to improve the
accuracy of analysis results.
. Files used in the model directory
o ‘nmodel - nanme’ - pol yspace. cfg
As mentioned above this file is copied from the ‘MATLAB installation
directory’\ pol yspace\ cf g\t enpl at eEnmbeddedCoder . cf g file the first time an

analysis is run on a model. It is subsequently modified by the Project Confguration block,
or the Configure button in the option in the PolySpace Analyser dialog. It contains the
PolySpace Verifier settings for analysing the current model.
o ppcom ec. sh
The PolySpace Embedded Coder post pre-processing command.
o pol yspace_additional _file_list.txt
This file is created if the Advanced option, Select Files is used in the PolySpace Analyser
dialog box. This option allows files that are not part of the model to be analysed together
with the model. For example these files could contain custom lookup table code, custom
stubs, device driver code etc. The Enable additional file list option needs to be set
together with configuring the list of extra files to analyse.
. Auto-generated files in the model directory
These files are generated from the model for each analysis when it is started, and do not need
archiving:

Release 2007a+ 265/546
Revision 4.2 vA



o ‘nodel nane’ _drs.txt

The drs information extracted automatically from the model.
o pol yspace_include _dir _|ist.txt

List of compilation include directories extracted from the mode.
o pol yspace file list.txt

List of file contained in the model to analyse
o ‘nmodel name’ | ast_paraneter.txt

The last set of parameters used in the PolySpace Analyser dialog box.

Release 2007a+ 266/546
Revision 4.2 vA



Previous

daCe

TECHNOLOGIES

PolyS

Back to table of contents

7.3.5. PolySpace commands available in batch mode as m-functions

You can also run the following commands from the command line.

Command name

Description

Icon (optional)

Pol ySpacekor EnbeddedCoder

Launch PolySpace on code generated
by Real Time Workshop
EmbeddedCoder

Pol ySpaceFor Tar get Li nk

Launch PolySpace on code generated
by TargetLink

Pol ySpaceFor Beacon

Launch PolySpace on code generated
by Beacon

Pol ySpaceSpool er

Inspect the queue of the remotely sent
analysis over the server

Pol ySpaceVi ewer

Launch PolySpace Viewer

Launch spooler

Open PolySpace
Rezult=

Pol ySpaceSet Tenpl at eCFG-1 | e

Select a template file in batch mode

Pol ySpaceCet Tenpl at eCFG-1 | e

Get the currently selected template file
(empty by default)

Pol ySpaceRecont | gure

In case of a PolySpace release update
without enabling the MATLAB plug-in

Example with EmbeddedCoder:

We supposes that in Simulink, a model has been opened with name "exanpl e. ndl ”
You can type in the MATLAB Command window: Pol ySpaceFor EnbeddedCoder (* exanpl e' ) and the analysis

starts.

Release 2007a+
Revision 4.2 vA

267/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4. Code Generator Specific Information

Related subjects:
7.4.1. PolySpace Model Link for TL

7.4.2. PolySpace Model Link for SL

Release 2007a+ 268/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.4.1. PolySpace Model Link for TL

The PolySpace Model Link for TL has been tested with the some release of the dSPACE Data
Dictionary version and TargetLink Code Generator — see the Installation Guide for more information.
As the PolySpace integration with dSPACE TargetLink extracts information from the dSPACE Data
Dictionary remember to regenerate the code before performing a PolySpace analysis. This ensures
that the Data Dictionary has been correctly updated.

e Subsystems
A dialog will be presented after clicking on the PolySpace for TargetLink block if multiple subsystems
are present in a diagram. Simply select the subsystem to analyse from the list.

» Data Range Specification
The tool automatically creates PolySpace Data Range Specification (DRS) information using the

dSPACE Data Dictionary for each global variable. This DRS information is used to initialise each global
variable to the range of valid values as defined by the min-max information in the data dictionary. This
allows PolySpace to model every value that is legal for the system during its analysis. Further the
Boolean types are modeled having a minimum value of 0 and a maximum of 1. Defining the min-max
information carefully in the model can help PolySpace to be more precise significantly because only
range of reels values are analyzed.

DRS cannot be applied to static variables. Therefore, the compilation flags —Dst at i c=is set
automatically. It has the effect of removing the static keyword from the code. If you have a problem with
name clashes in the global name space you may need to either rename one of or variables or disable
this option in PolySpace configuration.

e Lookup Tables

The tool by default provides stubs for the lookup table functions. This behaviour can be disabled from
the PolySpace menu - see section “PolySpace Menu“ for more information. The dSPACE data

dictionary is used to define the range of their return values. Note that a lookup table that uses
extrapolation will return full range for the type of variable that it returns.
Default Options

The following default options are set by the tool:
-1 path to source code

- deskt op

-D PST_ERRNO

-1 dspaceroot\mat!| ab\ TL\ Si nFi | es\ Generi c
-1 dspaceroot\matl ab\ TL\ srcfil es\ Generic
-1 dspaceroot/ matl ab\ TL\srcfil es\i 86\LCC
-1 mat | abr oot )\ pol yspace\i ncl ude

-1 mat | abr oot \ extern\incl ude

Release 2007a+ 269/546
Revision 4.2 vA



-1 matlabroot\rtwc\libsrc
-1 mat | abr oot \ si nmul i nk\'i ncl ude
-1 matl abroot\sys\I|cc\incl ude
Note ‘dspaceroot’ and ‘matlabroot’ are the dSSPACE and MATLAB tool installation

directories respectively.

» Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option “Cl ean code” and deselect the
option “Enabl e sections/ pragmas/inline/l SR/ user attributes”.

When installing PolySpace For TargetLink, the t | cgOpt i ons variable has been updated with

" Pol yspaceSupport', 'on' (seevariablein'C.\ dSPACE\ Mat | ab\ Tl \ confi g\ codegen

\'t| pre_codegen_hook. mfile).

Release 2007a+ 270/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.4.2. PolySpace Model Link for SL

The PolySpace Model Link for SL has been tested with RealTime Workshop Embedded Coder
Generator — see the Installation Guide for more information.

e Subsystems

A dialog will be presented after clicking on the PolySpace for Embedded Coder block if multiple
subsystems are present in a diagram. Simply select the subsystem to analyse from the list. The
subsystem list is generated from the directory structure from the code that has been generated.

» Default Options

The following default options are set by the tool:

-1 path to source code

- deskt op

-D PST_ERRNO

-1 mat| abr oot \ pol yspace\i ncl ude
-1 matl abroot\extern\incl ude

-1 matl abroot\rtwc\libsrc

-1 matl abroot\ sinul i nk\i ncl ude
-1 matl abroot\sys\I|cc\incl ude

Note ‘matlabroot’ is the MATLAB tool installation directory.
Data Range Specification
The tool automatically creates PolySpace Data Range Specification (DRS) information using the

MATLAB workspace. This DRS information is used to initialise each global variable to the range of
valid values as defined by the min-max information in the workspace.

Main sources of information are Si mul i nk. si gnal s and Si mul i nk. par anet ers.

Code Generation Options

The Real-Time Workshop configuration parameters settings must be configured as follows for optimum
use of the tool. Note: These are the options recommended by The MathWorks for generating target
code.

Release 2007a+ 271/546
Revision 4.2 vA



o “Real Time Workshop” tab:

1. Select“Generate HTM. report”andset“l ncl ude hyperlinks to
nodel”. Note that if this is not set navigation from PolySpace results to the model
will not work.

2. Set the system target file to be an appropriate ert . t | ¢ (use the browse

button to locate). This is an indication that the code generator is Real Time
Workshop Embedded Coder (and not just RealTime workshop, used for rapid

prototyping).

3. Set the Solver parameters “Type” to Fi xed- st ep, and “Sol ver to

di scr et e (no continuous state). It illustrates that the code has been generated for
a target, and not for a simulation based on continuous timing.

o Optionally, on “Interface panel” tab, make sure that “Gener at e reusabl e code”is
unselected. Setting this option will generate more warnings in the PolySpace results.

Release 2007a+ 272/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8. Results review

Related subjects:
8.1. Basics. prerequisite being ableto review PolySpace results

8.2. Coloured source codefor C

Release 2007a+ 273/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.1. Basics: prerequisite being able to review PolySpace
results

Once PolySpace has completed an analysis and there are graphical results available, there will be coloured entries
shown in the source code. This section explains how to understand the implications of the four colours:

*  Red shows run-time errors which will occur every time that piece of code is executed;

. shows code which is unreachable (dead code);

. is a warning;

. Green shows safe instructions: these are code sections which can never lead to a run time
error.

This section explains the steps necessary to analyze a result of any colour. There are four core rules to bear in
mind throughout this section, viz.

. The next instruction is reached providing no Run Time Error was met at the previous one.

. Each Run Time Error implies a “core dump” for PolySpace. The corresponding execution is considered to
have stopped, even if the run time execution of the code might not. SO — red checks will be followed by
grey checks, and orange checks only propagate the green parts through to subsequent checks.

. You should focus on the message given by PolySpace, and try not to jump to false conclusions. You must
explain the colour of a check step by step, until you find the root cause.

« You should focus on an explanation by examining the code, and try not to be influenced by knowledge of
what the code actually does.

Related subjects:
8.1.1. Grey followsred

8.1.2. What isthe message and what doesit mean?
8.1.3. What isthe C explanation?
8.1.4. Specific check analysis

Release 2007a+ 274/546
Revision 4.2 vA



y R HNOLOGIES
Previous Back to table of contents Next

8.1.1. Grey follows red

This section explains grey checks follow red ones, and hence how green checks are propagated out of ones. In the
example below, consider the explanation of

*  the grey checks after the red in the red function;
e and the green checks relating to the array.

voi d red(void) extern int Read_ An_I nput (void);
{ voi d propagat e(voi d)
i nt X {
X =1 X ; int X

int y[100];
X = 1; X = Read_An_Input();
} yix] =0; //

y[x] = 0;

}

Consider each line of code for:

e The red function.
*  When PolySpace divides by X, it has not been initialized. Therefore the corresponding check (Non
Initialized Variable) on X is red;
*  Asaresult all possible execution paths are stopped, because they all produce an RTE.

*  The propagate function:
e Xis assigned the return value of Read An_Input. After this assignment, X ~ [-2"31, 2"31-1].
* At the first array access, an “out of bounds” error is possible since X can be equal to (say) -3 as well as 3;
*  Subsequently, all conditions leading to an RTE are assumed to have been truncated — they are no longer
considered in the analysis. So on the following line, the executions for which X ~ [-2731, -1] and [100, 2"31-
1] are stopped;
. Consequently, at the next instruction, X ~ [0, 99];
*  Hence at the second array access, the check is green because X ~ [0, 99].

Summary

Green checks are propagated out of ones.

Note that when writing manual stubs, you can use this property of PolySpace to restrict data input values: See how to assign
ranges of variables in Reduce the cloud of points section.

Release 2007a+ 275/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.1.2. What is the message and what does it mean?

PolySpace numbers the checks it makes using the same sequence as that followed during the execution of the
code.

Consider the instruction
X++:

PolySpace first checks for a potential NIV (Non Initialized Variable) for x, then checks the potential OVFL
(overflow) — which mimics the execution sequence. An awareness of such sequences will help you to understand
the message presented by PolySpace, and will help you to work out what that message implies.

Consider the orange NIV on x in the test:
if (x > 101);

You might conclude that the PolySpace analysis has not kept track of the value of x. However, studying the
context in which the check is made will help you to understand it better.

extern int read_an_i nput(void);

voi d mai n(voi d)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) //
{ Yo
}

Using the viewer, you can see the category of each check by clicking on it. When an orange check is considered,
any value of a variable which would result in an RTE is not considered further. However, as the example NIV
(Non Initialized Variable) shows, any value which does not cause the RTE is considered for analysis on
subsequent lines.

The correct interpretation of these analysis results might be that if x has been initialised, the only possible value
for it is 100. Thus x can never be initialised and greater than 101, so the rest of the code is grey. Such a
conclusion might be different from that reached in haste!

Summary

e "(x > 100)" does NOT mean that PolySpace doesn't know anything about x.
e "(x > 100)" DOES means that PolySpace doesn't know whether X has been initialised.

The first rules of reviewing results are:

Release 2007a+ 276/546
Revision 4.2 vA



*  Focus on the message given by PolySpace Verifier,
* and try not to jump to conclusions.

Release 2007a+ 277/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.1.3. What is the C explanation?

Results can only be explained based on the code analysed, so be wary of considering

*  aphysical action from the environment in which the code is intended to operate;
*  aparticular configuration which is not part of the analysis;
e or any reason other than the code itself.

Remember, all the tool deals with is the C code submitted to it!

Consider the example below, paying particular attention to the dead (grey) code following the "if" statement.
extern int read _an_input(void);

voi d mai n(voi d)

{ .
int x;
i nt y[100];
X = read_an_input();
ylx ] =0; //
ylx-1] = (1 / X + X
i f (x == 0)
yix] = 1; 11
}

You can see that
* the line containing the access to the y array is unreachable;
* 5o the test to assess whether x is equal to 0 is always false;
e theinitial conclusion isthat " thetest isalwaysfalse". Now, it would be easy to jump to the
conclusion that this results from input data which is always different from 0. However,
Read_An_I| nput can be any value in the full integer range, so this is not the right explanation.

So consider the execution path leading to the grey code...

e The orange check on the array access (y| x]) will truncate any execution path leading to a run
time error, meaning that subsequent lines will be dealing with x ~ [0, 99]

*  The orange check on the division will also truncate all executions paths that lead to a run time
error so that in our example, all instances where x is equal to 0 are stopped. For the code execution
path after the orange division sign, x ~ [1; 99];

e Thus x is never equal to 0 at thisline— and hence, the array access is green (y( x- 1).

Summary

In this example, all results are located in the same procedure. But by using the call tree, the same process can

Release 2007a+ 278/546
Revision 4.2 vA



easily be followed even if an orange check results from a procedure at the end of a long call sequence. Follow the
"called by" call tree — and concentrate on explaining the issues by referenceto the code alone!

Release 2007a+ 279/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.1.4. Specific check analysis

Related subjects:
8.1.4.1. PolySpace memorizes the relationships between variables

8.1.4.2. The purpose of the -continue-with-red-error option.
8.1.4.3. Default settings, —continue-with-red-error and side effects
8.1.4.4. Why there might be 2 distinct coloursin a while/for statement.

Release 2007a+ 280/546
Revision 4.2 vA



PolyS pace

Previous Back to table of contents Next

8.1.4.1. PolySpace memaorizes the relationships between variables

Abstract

Understand that a red error can hide a bug which occured on previous lines.

10 i nt mai n(voi d)

11 {

12 int x,old x;

13

14 X = read_an_input();
15 old x = x;

16

17 if (x<0 || x>10)

18 return O;

19

20 f(x);

21

22 x =1/ old x; // division is red
23

24 }

doubl e sqgrt (double);
int read_an_input(void);

void f(int a)

{

int tnp;

tmp = sqrt(0-a);
}

O©oOoO~NOOTPH,WNPEP

Explanation 1

*  Whenold xisassignedtox (15 old x=x;), PolySpace memorizes two pieces of information:

* xandold x are equivalent to the whole range of an integer: [-2"31 ; 2"31-1];

 and x and old x are equal.
o after the "if" clause (17  if (x<0 || x>10)), X is equivalent to [0; 10]. Because x and old_x are equal, old_x
isequivalent to [0;10] as well, because otherwise the return statement would have been executed;
* when X is passed to "F" (20  f(x);), the only possible valid conclusion for sqrt is that x is equal to 0. All
other values lead to a run time exception (7  tmp = sqrt(0-a););
*  Dback to line 22, because x and old_x are equal, old x is also equal to 0.

Explanation 2

*  supposing that Verifier exits immediately when encountering a run time error, let's introduce a pri nt
statement that will write to the standard output after the "f"" procedure has been called (20  {(x);), to show the
current value of x and old_x;

*  the only possibility of reaching the pri nt statement is when X is equal to 0. So, if "x" is equal to 0, old x
must have been assigned to 0 too - which makes the division red.

Summary

PolySpace builds relationships between variables and propagates the consequence of these relationships backwards and
forwards.

Release 2007a+ 281/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.1.4.2. The purpose of the -continue-with-red-error option.

This option is used to deal with two primary circumstances.
* A red error appears in code which was expected to be dead code.
* A red error appears which was expected, but the analysis is required to continue.

PolySpace performs an upper approximation of variables. Consequently, it may be true that PolySpace analyses a
particular branch of code as though it was accessible, despite the fact that it could never be reached during “real
life” execution. In the example below, there is an attempt to compare elements in an array, and PolySpace is not
able to conclude that the branch was unreachable. PolySpace may conclude that an error is present in a line of
code, even when that code cannot be reached.

Consider the figure to the right. As a result of imprecision,
each colour shown can be approximated by a colour

immediately above it in the grid. It is clear that green or red @
checks can be approximated by orange ones, but the ol B
. . . . g 5,
approximation of grey checks is less obvious. P e
; %
Red .f @
T 1 ._."
\ /
k!

During PolySpace analysis, data values possible at execution time are represented by supersets including those
values — and possibly more besides.
Grey code represents a situation where no valid data values exist. Imprecision means that such situation can be
approximated
* by an empty superset;

* by a nonempty super set, members of which may generate checks of any colour.
And hence PolySpace cannot be guaranteed to find all dead code in an analysis.

However, there is no problem in having grey checks approximated by red ones. Where any red error is
encountered, all instructions which follow it in the relevant branch of execution are aborted as usual. At execution
time, it is also true that those instructions would not be executed.

Consider the following example.

i f
(condition)
t hen
action_produci ng_a red;
Release 2007a+ 282/546

Revision 4.2 vA



After the "if" statement, the only way execution can continue is if the condition is false; otherwise a red check
would be produced. Therefore, after this branch the condition is always false. For that reason, the -continue-with-
red-error option is provided to allow code analysis to continue, even with a specific error.

Remember that this propagates values throughout your application. None of the execution paths leading to the
RTE will continue after the error and if the red check is a real problem rather than an approximation of a grey
check, then the analysis will not be representative of how the code will behave when the red error has been
addressed.

The - cont i nue-wi t h-r ed-error option is applicable in this example case.

1 int a[] ={ 1,2,3,4,5,7,8,9,10 };
2

3

4 voi d mai n(voi d)

5 {

6 i nt x=0;

7 int tnp;

8

9

10 if (a[5] > a[6])

11 tmp = 1 /x;

12 }

Release 2007a+ 283/546

Revision 4.2 vA



y R HNOLOGIES
Previous Back to table of contents Next

8.1.4.3. Default settings, —continue-with-red-error and side effects

This section explains why when a red error has been found the analysis continues but some cautions need to be
taken. Consider this piece of code:

i nt *global ptr; voi d ot her function(void)
int variable_ it _points_to; {
if (condition==1)
voi d big red(void)
{ }
int r;

int nmy_zero = 0;
if (condition==1)

r =1/ ny_zero; // red ZDV

/'l hundreds of lines
gl obal _ptr = &variable_it_points_to;
ot her _function();

}

PolySpace works by propagating data sets representing ranges of possible values throughout the call tree, and
throughout the functions in that call tree. Sometimes, PolySpace internally subdivides the functions for analysis, and
the propagation of the data ranges need several iterations (or integration levels) to complete. That effect can be
observed by examining the colour of the checks on completion of each of those levels. It can sometimes happen
that:

« PolySpace will detect grey code which exists due to a terminal RTE which will not be flagged in red until a
subsequent integration level.

« PolySpace flags a NTC in red with the content in grey. This red NTC is the result of an imprecision, and
should be grey.

Suppose that an NTC is hard to understand at given integration level (level 4):
« If other red checks exist at level 4, fix them and restart the analysis

« Otherwise, look back through the results from each previous level to see whether other red errors can be
located. If so, fix them and restart the analysis

Release 2007a+ 284/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents

8.1.4.4. Why there might be 2 distinct colours in a while/for statement.

It is sometimes true that inside the condition of a loop, a check is green then red.

Consider the following example.

1 voi d mai n(voi d)

2 {

3 int tab[2] ={ 1, 2 };
4 int index = O;

5 while (tab[ index]) { index--; }

/1l the colour of "array index within bounds" is
[l first green

/1l than red

6 }

Clicking on the tab variable (line 5) in the Viewer will reveal the following

Error : pointer is outside its bounds <= then red
variable is initialized

Pointer is initialized

Pointer is initialized

Pointer is initialized

Pointer is initialized

pointer is wthin its bounds <= first green

Now, visualise the C loop as having been transformed into a label and a goto

if (not(tab[index]) goto end;
/1l first location of the check is green
| oop_begi n:

I ndex = index-1;
if (tab[index]) goto | oop_begin;
/'l second l|ocation of the check is red
end:

So, the second colour represents the second pass through the loop, and (in the example) should be investigated.

Release 2007a+
Revision 4.2 vA

285/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2. Coloured source code for C

Related subjects:
8.2.1. Illegal pointer accessto variableor structurefield: IDP

8.2.2. Array conversion must not extend range: COR
8.2.3. Array index within bounds. OBAI

8.2.4. Initialized Return Value: IRV

8.2.5. Non-Initialized Variable: NIV/NIVL

8.2.6. Non-Initialized Pointer: NI P

8.2.7. Power arithmetic. POW

8.2.8. User Assertion: ASRT

8.2.9. Scalar and Float Underflows. UNFL

8.2.10. Scalar and Float Overflows. OVFL

8.2.11. Float underflows and overflows: UOVFL
8.2.12. Scalar or Float Division by zero: ZDV

8.2.13. Shift amount in 0..31 (0..63): SHF

8.2.14. L eft operand of left shift isnegative: SHF
8.2.15. Function pointer must point to a valid function: COR
8.2.16. Wrong type for argument: COR

8.2.17. Wrong number of arguments. COR

8.2.18. Wrong return type of a function pointer. COR
8.2.19. Wrong return typefor arithmetic functions. COR
8.2.20. Pointer within bounds. |IDP

8.2.21. Non Termination of Call or L oop

8.2.22. Unreachable Code: UNR

8.2.23. Value On Assignment: VOA

8.2.24. I nspection Points. | PT

Release 2007a+ 286/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.1. lllegal pointer access to variable or structure field: IDP

This is a check to establish whether in the dereferencing of an expression of the form ptr+i, the variable/
structure field initially pointed to by ptr is still the one accessed. See ANSI C standard ISO/IEC 9899
section 6.3.6.

Consider the following example.

1 I nt a;

2

3 struct {

4 int f1;

5 int f2;

6 int f3;

7 } S

8

9 voi d mai n(voi d)

10 {

11 vol atile int x;

12

13 if (%)

14 *(&a+l) = 2; /1 1DP ERROR &a +1 doesn't point to a any | onger
15 if (%)

16 *(&S.f1 +1) = 2; // IDP ERROR you are not allowed to access f2
like this

17 }

According to the ANSI C standard, it is not permissible to access a variable (or a structure field) from a
pointer to another variable. That is, ptr+i may only be dereferenced if ptr+i is the address of a subpart
of the object pointed to by ptr (such as an element of the array pointed to by ptr, or a field of the
structure pointed to by ptr).

For instance, the following code is correct because the length of the entity pointed to by ptr_s reflects
the full structure length of My_struct (at line 11):

t ypedef struct {
int f1;
int f2;
int f3;

} My_Struct;

OOk WNPE

Release 2007a+ 287/546
Revision 4.2 vA



7 My _Struct s = {1, 2, 3};

8

9 i nt mai n(voi d)

10 {

11 My _Struct *ptr_s = &s;

12

13 /'l change to f2 field

14 *((int *)& +1) = 2; // Correct eval uation
15

16 return O;

17 }

Release 2007a+ 288/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.2. Array conversion must not extend range: COR

This is a check to establish whether a small array is mapped onto a bigger one through a
pointer cast. Consider the following example.

1

2 t ypedef int Big[100];

3 typedef int Small[10];

4 t ypedef short Equi vBi g[ 200] ;

5

6 Smal | snml |t ab;

7 Big bigtab;

8

9 voi d mai n(voi d)

10 {

11 vol atile int random

12

13 Bi g * ptr_big = &bi gt ab;

14 Smal |l * ptr_small = &smalltab;

15

16 if ( ) {

17 Big *new ptr _big = (Big*)ptr snmall; // COR ERROR array
conversi on nmust not extend range

18 }

19 if ( ) {

20 Equi vBi g *ptr_equi vbig = (EquivBi g*)ptr big;
21 Smal | *ptr_new small = (Small*)ptr_big; /'l Conversion
verified

22 }

23 }

In the example above, a pointer is initialised to the Big array with the address of the Small array. This is
not legal since it would be possible to dereference this pointer outside the Small array. Line 20 shows
that the mapping of arrays with same size and different prototypes is acceptable.

Release 2007a+ 289/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.3. Array index within bounds: OBAI

This is a check to establish whether an index accessing an array is compatible with the length of that
array. Consider the following example.

1

2 #define TAILLE TAB 1024

3 int tab[ TAI LLE TAB];

4

5 voi d mai n(voi d)

6 {

7 i nt index;

8

9 for (index = 0; index < TAILLE TAB ; index++)
10 {

11 tab[i ndex] = 0;

12 }

13 tab[index] =1; [/ OBAl ERROR Array index out of bounds [O0..1023]
14 }

Just after the loop, index equals SIZE_TAB. Thus tab[index] = 1 overwrites the memory cell just after
the last array element.
An OBAI check can also be localised on a + operator, as another example illustrates.

int tab[10];

voi d mai n(voi d)
{
i nt index;
for (index = 0; index < 10 ; I ndex++)
*(tab + index) = 0;

*(tab + index) = 1; // OBAl ERROR Array index out of bounds

P OoO~NOOOITS,WNEPE

0 }
Note that the message associated with the check OBAI gives always the range of the array: Arr ay
i ndex out of bounds [0..1023]

Release 2007a+ 290/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.4. Initialized Return Value: IRV

This is a check to establish whether a function returns an initialised value. Consider the following
example.

1

2 extern int random.int(void);

3

4 int reply(int nsQ)

5 {

6 int rep =

7 if (nsg > 0) return rep;

8 }

9

10 voi d mai n(voi d)

11 {

12 i nt ans;

13

14 if (randomint())

15 ans = reply(l); /1 TRV verified: function returns an
initialised val ue

16 else if (randomint())

17 ans = reply(0); /1 1RV ERROR function does not return an
initialised val ue

18 el se

19 reply(0); /1 No IRV checks because the return val ue
is not used

20

21 }

22

23

Variables are often initialised using the return value of functions. However, in the above example the
return value is not initialised for all input parameter values. In this case, the target variable will not be
always be properly initialised with a valid return value.

Release 2007a+ 291/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.5. Non-Initialized Variable: NIV/NIVL

This is a check to establish whether a variable is initialised before being read. Consider the following
example.

1

2 extern int random.int(void);

3

4 voi d mai n(voi d)

5 {

6 int x,i;

7 doubl e twent yFl oat[ 20];

8 int y =0;

9

10 i f (randomint()) {

11 y += X; /1 NIV ERROR: Non
Initialized Variable (type: int 32)

12 }

13 i f (randomint()) {

14 for (i =1; i < 20; i++) {

15 if (I %2) twentyFloat[i] = 0.0;
16 }

17 twentyFloat| 2] = [ 4] 5.0; // NIV Warning. only odd
i ndexes are initialized.

18 }

19 }

The result of the addition is unknown at line 11 because x is not initialised (UNR unreachable code on
"+" operator).

In addition, line 17 shows how PolySpace prompts the user to investigate further (by means of an
orange check) when all cells have not been initialised.

Note that associated to each message which concerns a NIV check, PolySpace gives the type of the
variable like the following examples: (type: volatile int32),(type: int 16),(type:

unsi gned i nt 8), etc.

Release 2007a+ 292/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.6. Non-Initialized Pointer: NIP

This is a check to establish whether a pointer is initialised before being dereferenced. Consider the
following example.

1

2

3 voi d mai n(voi d)

4 {

5 int* p;

6 *p =0; // NP ERROR pointer not initialized
7 }

As p is not initialised, an undefined memory cell would be overwritten at line 6 (*p = 0) (also leading to
the unreachable check on "*").

Release 2007a+ 293/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.2.7. Power arithmetic: POW

Check to establish whether the standard pow function from math.h library is used with an acceptable (positive)
argument.

C Example:

1 #i ncl ude <mat h. h>

2

3 extern doubl e pst_randd(void);

4 extern int pst_intr(void);

5 i nt main(void)

6 {

7 int IRes, ILeft, IR ght;

8 doubl e Res;

9

10 if (pst_intr()) {

11 | Left = 0;

12 | R ght = -1;

13 Res = pow(!| Left, IR ght); /1 POW ERROR Power nust be positive
14 }

15

16 | Left = 2e8;

17 | Ri ght = 2;

18 Res = (I Left, IR ght); /1 OVFL VWMr ni ng
19 Res = (pst_randd(), pst_randd()); [/ PONWAarning : Power may be not
positive

20

21 return(0);

22 }

Explanation:

An error should occur on the pow function on integer or float values with respect to the values of the left and right
parameters for some couple of parameters (left = 0 and right <0) or (left < Oand right > 0) : (0, -2), (-2,0.5), etc.
Otherwise, PolySpace prompts the user to investigate further by means of an orange check.

Release 2007a+ 294/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.8. User Assertion: ASRT

This is a check to establish whether a user assertion is valid. If the assumption implied by an assertion
is invalid, then the standard behaviour of the assert macro is to abort the program. PolySpace therefore
considers a failed assertion to be a runtime error. Consider the following example.

1 #i ncl ude <assert. h>

2

3 t ypedef enum

4 {

5 nonday=1, tuesday,

6 wensday, thursday,
7 friday, sat ur day,
8 sunday

9 } dayofweek ;

10

11 /'l stubbed function
12 dayof week random day(void);

13 i nt random val ue(voi d);

14

15 voi d mai n(voi d)

16 {

17 unsi gned int var_flip;

18 unsigned int flip flop;

19 dayof week cur Day;

20 unsi gned int constant = 1;

21

22 if (randomvalue()) flip flop=1l;, else flip flop=0; // flip_flop
randomy be 1 or O

23 var _flip = (constant | random val ue()); [l var flipis
al wvays > 0

24

25 i f(random val ue()) {

26 assert(flip flop==0 || flip flop==1); // User Assertion is
verified

27 assert (var _flip>0); /'l User Assertion is
verified

28 assert(var _flip==0); /1 ASRT ERROR:. Failure User
Assert

29 }

30

Release 2007a+ 295/546
Revision 4.2 vA



31 if (randomvalue()) {

32 curbDay = random day(); /1 Random day of the week
33

34 assert( curDay > thursday); /'l User assertion is
verified

35 assert( curDay <= thursday); /1 ASRT ERROR: Failure User
Assertion

36 }

37 }

In the main, the assert function is used in two different manners:

1. To establish whether the values flip_flop and var_flip in the program are inside the domain
which the program is designed to handle. If the values were outside the range implied by the
assert (see line 28), then the program would not be able to run properly. Thus they are flagged
as run-time errors.

2. To redefine the range of variables as shown at line 34 where curDay is restricted to just a few
days. Indeed, PolySpace makes the assumption that if the program is executed without run time
error at line 33, curDay can only have a value greater than thursday after this line.

Release 2007a+ 296/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.9. Scalar and Float Underflows: UNFL

These are checks to establish whether arithmetic expressions underflow. A scalar check is used with
integer type, and a float check for floating point expressions. Consider the following example.

1 #i ncl ude <f| oat. h>

2 extern int random.int(void);

3

4 voi d mai n(voi d)

5 {

6 int i = 1;

7 float fval = FLT_MAX;

8

9 I =-2* (1 << 30); [l i = -2*¥*31

10 if (random.int()) =1 - 1 /'l UNFL ERROR: scal ar
variabl e is underfl ow

11 if (random.int()) fval = -2 * fval; [/ UNFL ERROR fl oat
variabl e is underfl ow

12 }

13

The minimum integer value on a 32 bit architecture platform is represented by -2**31, thus adding (-1)
will raise an underflow.

Release 2007a+ 297/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.10. Scalar and Float Overflows: OVFL

These are checks to establish whether arithmetic expressions overflow. This is a scalar check with
integer type and float check for floating point expression. Consider the following example.

1 #1 ncl ude <fl oat. h>

2 extern int random.int(void);

3

4 voi d mai n(voi d)

5 {

6 int i = 1;

7 float fvalue = FLT_MAX;

8

9 I =1 << 30; [l 1 = 2**30

10 if (random.int())

11 =2 * (i - 1) + 2 /[l OVFL ERROR 2**31 is an overfl ow
val ue for int32

12 if (randomint())

13 fvalue = 2 * fvalue + 1.0; // OVFL ERROR float variable is
overfl ow

14 }

On a 32 bit architecture platform, the maximum integer value is 2**31-1, thus 2**31 will raise an
overflow.

In the same manner, if fvalue represents the biggest float its double cannot be represented with same
type and raises an overflow.

Left shift overflow on signed variables: OVFL

Overflows can be also be encountered in the case of left shifts on signed variables. In the following
example, the higher order bit of 0x41021011 (hexadecimal value of 1090654225) has been lost,
highlighting an overflow (integer promotion).

1

2 voi d mai n(voi d)

3 {

4 int i;

5

6 i = 1090654225 << 1; // OVFL ERROR on left shift range
7 }

Release 2007a+ 298/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.11. Float underflows and overflows : UOVFL

The check UOVFL only concerns float variables. PolySpace shows an UOVFL when both overflow and
underflow can occur on the same operation.
Example:

1 #include <nmath. h>

2 extern int randon(void);
3 #define FLT _MAX 3.40282347e+38F
4

5 int toto(void)

6 {

7 fl oat Xx;

8 if( ())

9 {

10 = - FLT_MAX;

11 }

12 else if ( ()

13 {

14 = FLT_MAX;

15 }

16 el se

17 {

18 = 0;

19 }

20 = 2.0F * x; /1 UOVFL unproven: possible overflow and
under f | ow

21 return 1;

22 }

According to the branch in use, the results of the operation 2. OF * x could overflow or underflow.

Related subjects:
8.2.11.1. How much isthe biggest float in C?

8.2.11.2. What isthetype of constants/What is a constant overflow?
8.2.11.3. Float underflow versusvalues near zero: UNFL

Release 2007a+ 299/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.2.11.1. How much is the biggest float in C?

There are occasions when it is important to understand when overflow may occur on
a float value approaching its maximum value. Consider the following example.

voi d mai n(voi d)

{
float x, v;
X = 3.40282347e+38f; /[l is green
y = (float) 3.40282347e+38; // OVFL red
}

There is a red error on the second assignment, but not the first. The real "biggest"
value for af | oat is: 340282346638528859811704183484516925440. 0 —
MAXFLOAT -.

Now, rounding is not the same when casting a constant to a float, or a constant to a
double:

» floats are rounded to the nearest lower value;

* doubles are rounded to the nearest higher value;

o 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440 (named
MAXFLOAT).

* In the case of the second assignment, the value is cast to a double
first - by your compiler, using a temporary variable D1 -, then into a float

— another temporary variable -, because of the cast. Float value is
greater than MAXFLOAT, so the check is red.

* Inthe case of the first assignment, 3.40282347e+38f is directly cast
into a float, which is less than MAXFLQOAT

The solution to this problem is to use the "f " suffix to specify the variable directly as a
float, rather than casting.

Release 2007a+ 300/546
Revision 4.2 vA



PonSpace

Previous

TECHNOLOGIES
Back to table of contents

8.2.11.2. What is the type of constants/What is a constant overflow?

Consider the following example, which would cause an overflow.

int x = OXFFFF; /* OVFL */

The type given to a constant is the first type which can accommodate its value, from the appropriate
seguence shown below. (Please refer to “Target specification” section for information about the size of

a type depending on the target.)

Decimals int , long , unsigned | ong
Hexadecimals Int, unsigned int, |long, unsigned |ong
Floats doubl e
For examples (assuming 16-bits target):
5.8 doubl e
6 i nt
65536 | ong
0x6 I nt
OxFFFF unsi gned i nt
5. 8F f | oat
65536U unsi gned i nt

The options —ignore-constant-overflows allow the user to bypass this limitation and consider the line

int X = OXFFFF; /*OVFL */asint x =
(from -32768 to 32767).

Release 2007a+
Revision 4.2 vA

- 1; instead of 65535, which does not fit into a 16-bit integer

301/546



PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

8.2.11.3. Float underflow versus values near zero: UNFL

The definition of the word "underflow" differs between the ANSI standard and the ANSI/IEEE 754-1985 standard. According to
the former definition, underflow occurs when a number is sufficiently negative for its type not to be capable of representing it.
According to the latter, underflow describes the erroneous representation of a value close to zero due to the limits of its
representation.

PolySpace analyses apply the former definition. The latter definition does not impose the raising of an exception as a result of
an underflow. By default, processors supporting this standard permit the deactivation of such exceptions.

Consider the following example.

2 #defi ne FLT_MAX 3.40282347e+38F // maxi num representable float found in <float. h>
3 #define FLT_MN 1.17549435e-38F // mininmum normalised float found in <float. h>
4

5 voi d nai n(voi d)

6 {

7 float zer float = FLT MN;

8 float mn float = -(FLT_MAX);

9

10 zer float = zer float * zer float; // No check underflow near zero. VOA says {[expr] =
0. 0}

11 mn float = mn float * mn float; // UNFL ERROR underfl ow checked by verifier

12

13 }

Release 2007a+ 302/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.12. Scalar or Float Division by zero: ZDV

This is a check to establish whether the right operand of a division (that is, the denominator) is different
from 0O[.0]. Consider the following example.

1 extern int random val ue(void);

2

3 voi d zdvs(int p)

4 {

5 int i, j =1;

6 i =1024 / (]-p); /1 ZDV ERROR Scal ar Division by Zero
7 }

8

9 voi d zdvf (fl oat p)

10 {

11 float i,] = 1.0;

12 | =1024.0 / ()j-p); /!l ZDV ERROR float Division by Zero
13 }

14

15 I nt mai n(voi d)

16 {

17 vol atile int random

18 if (randomval ue()) zdvs(1); /1 NTC ERROR: because of ZDV ERROR
in ZDVS.

19 if (randomval ue()) zdvf(1.0); // NIC ERROR because of ZDV ERROR
i n ZDVF.

20 }

Release 2007a+ 303/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents

8.2.13. Shift amount in 0..31 (0..63): SHF

This is a check to establish whether a shift (left or right) is bigger than the size of the integral type

operated upon (int or long int). The range of allowed shift depends on the target processor: 16 bits on c-
167, 32 bits on i386 for int, etc. Consider the following example.

{

O©CoOoO~NOOOTDSWNPE

10
11
12
13
14
15
16
17
18}

In this example, it is shown that the shift amount is greater than the integer size.

Release 2007a+
Revision 4.2 vA

extern int

random val ue(voi d);

voi d mai n(voi d)

volatile int x;
int k,
unsi gned

i f
I f
I f
i f
i f
I f

(
(

)
)

Kk
Kk

=~

=~

1024:

int v,

<<
>>

<<
>>

u >>
u <<

u =

16;
16;

32:
32:

32:
32:

1024,

I

/11
/11

/11
/11

32 bits on 1386

SHF ERROR
SHF ERRCR

SHF ERRCR
SHF ERROR

304/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.14. L eft operand of left shift is negative: SHF

This is a check to establish whether the operand of a left shift is a signed number. Consider the
following example.

1

2

3 voi d mai n(voi d)

4 {

5 int x = -200;

6 int vy,

¢

8 y = x << 1; // SHF ERROR |eft operand nust be positive
9

10 }

As the representation of the sign of a number is stored in the highest order bit, it is not possible to left-
shift a signed number without losing that sign information.

As an aside, note that the -allow-negative-operand-in-shift option used at launching time instructs
PolySpace to permit explicitly signed numbers on shift operations. Using the option in the example
above would see the red check at line 8 transformed in a green one. Similarly, if the analysis had
included the expression -2 << 2 atline 9, then that line would have been given a green check and y
would assume a values of -8.

Release 2007a+ 305/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.15. Function pointer must point to a valid function: COR

This is a check to establish whether a function pointer points to a valid function, or to function with a
valid prototype. Consider the following example.

1

2 typedef void (*Call Back)(float *data);

3

4 struct {

5 int ID

6 char nane[ 20] ;

7 Cal | Back func;

8 } funcS;

9

10 float fval;

11

12 voi d mai n(voi d)

13 {

14 Cal | Back cb = (CallBack)((char*)&f uncS + 24*si zeof (char));
15

16 (& val); // COR ERROR function pointer nust point to a valid
function

17 }

In the example above, func has a prototype in conformance with CallBack's declaration. Therefore func
is initialised to point to the NULL function through the global declaration of funcS.

Consider a second example.

1

2 #defi ne MAX_MEMSEG 32764

3 typedef void (*ptrFunc)(int nenseg);

4 ptrFunc initFlash = (ptrFunc)(0x003c);

5

6 voi d mai n(voi d)

7 {

8 int i;

9

10 for (i =0 ; i < MAX MEMSEG 1++) [/ NTL propagation
11 {

12 initFlash(i); /1 COR ERROR function pointer nmust point to a

Release 2007a+ 306/546
Revision 4.2 vA



valid function
13 }

14

15 }

As PolySpace does not take the memory mapping of programs into account, it cannot ascertain
whether 0x003 is the address of a function code segment or not (for instance, as far as PolySpace is
concerned it could be a data segment). Thus a certain (red) error is raised.

Release 2007a+ 307/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.16. Wrong type for argument: COR

This is a check to establish whether each argument passed to a function matches the prototype of that
function. Consider the flowing example.

1

2 t ypedef struct {

3 float r;

4 float i;

5 } conpl ex;

6

7 typedef int (*t_func) (conpl ex*);
8

9 Int foo type(int *x)

10 {

11 iIf (*x% == 0) return O;
12 el se return 1;

13 }

14

15 voi d mai n(voi d)

16 {

17 t _func ptr_func

18 int j,i = 0;

19

20 ptr_func = foo_type;

21 j = ptr func(&); /1 COR ERROR. wrong type of argunment for #1
22 }

23

In this example, ptr_func is a pointer to a function which expects a pointer to a complex as input
argument. However, the parameter used is a pointer to an int.

Release 2007a+ 308/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.17. Wrong number of arguments: COR

This is a check to establish whether the number of arguments passed to a function matches the
number of arguments in its prototype. Consider the following example.

1

2 typedef int (*t_func_2)(int);

3 typedef int (*t _func_2b)(int,int);
4

5 Int foo nb(int x)

6 {

7 if (x%® == 0)

8 return O;

9 el se

10 return 1;

11 }

12

13

14 voi d mai n(voi d)

15 {

16 t _func_2b ptr_func;

17 int i =0;

18

19 ptr func = (t_func_2b)foo_nb;
20 i = ptr_func(l,2); [/ COR ERROR the wong nunber of argunents
21 }

22

In this example, ptr_func is a pointer to a function that takes two arguments but it has been initialised to
point to a function that only takes one.

Release 2007a+ 309/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.18. Wrong return type of a function pointer: COR

This is a check to establish whether the return type passed to a function pointer matches the
declaration in its prototype. Consider the following example.

1

2 typedef int (*t_func_2)(int);

3 t ypedef double (*t _func_2b)(int);
4

5 Int foo nb(int x)

6 {

7 if (x% == 0)

8 return O;

9 el se

10 return 1;

11 }

12

13

14 voi d mai n(voi d)

15 {

16 t _func_2b ptr_func;

17 int i =0;

18

19 ptr func = (t_func_2b)foo_nb;
20 i = ptr _func(l,2); [/ COR ERROR function pointer nmust point on
a valid function

21 /1 COR Warning: return type of function is INT
but a FLOAT was expected

22 }

23

In this example, ptr_func is a pointer to a function that return a double but it has been initialised to point
to a function that returns an int. The understanding of the red error is given in the orange associated
COR message.

Release 2007a+ 310/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.2.19. Wrong return typefor arithmetic functions. COR

This is a check to establish whether that a wrong return type is used for an arithmetic function.
Using arithmetic functions without including <mat h. h> is compiler dependent in the real world because

compiler could associate a integral return type to an implicit function.
However, as arithmetic functions are built-in in PolySpace, you can face an inconsistency problem
<mat h. h>is not explicitly included in the code file where an arithmetic function is used. All arithmetic

function declared in <nat h. h> are concerned.
Consider the following example.
Results without <math.h>:

1

2 int main(void) {

3

4 doubl e x;

5 x = cos(23.1415); // COR ERROR return type of function cos is INT 32
but a float 64 was expected

6 }

Resultswith “math.h”:

#i ncl ude <mat h. h>
I nt main(void) {

1

2

3

4 doubl e x;
5 X cos(2*3.1415);

6 }

In the previous example without the definition of <mat h. h>, cos is declared without prototype and
default return type is ani nt 32.

Release 2007a+ 311/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

8.2.20. Pointer within bounds: IDP

This is a check to establish whether a dereference pointer is still within the bounds of the object it
intended to point to.
Consider the following example.

{

©CoOoO~NOOOTDSWNEPE

10
11
12
13
14
15
16
17}

#define TAILLE TAB 1024
int tab[ TAILLE TAB];
int *p = tab;

voi d mai n(voi d)

i nt index;

for (index = 0; index < TAILLE TAB ; index++, p++)

*p =1; [/ IDP ERROR pointer is outside its bound

In the example, the pointer p is initialised to point to the first element of the tab array at line 4. When
the loop is exited, p points beyond the last element of the array.

Thus line 16 overwrites memory illegally.

Other IDP examples:

Related subjects:
8.2.20.1. Under standing addressing

8.2.20.2. Under standing pointers

Release 2007a+
Revision 4.2 vA

312/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.20.1. Understanding addressing

Related subjects:
8.2.20.1.1. | systematically have an orange out of bounds access on my hardwareregister

8.2.20.1.2. The NULL pointer case
8.2.20.1.3. Comparing address

Release 2007a+ 313/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.20.1.1. | systematically have an orange out of bounds access on my hardware
register

Many code analyses exhibit out of bound checks with respect to accesses to absolute addresses and/or hardware registers.
(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 ;. I/ ZDV check is because X ~ [-2731, 2731-1] permanently.
/'l The pointer out of bounds check is because 0x20000
/1 may address anything of any length
/1 NIV check is on X as a consequence
_|ol x| i roid mai n (voi d)
Expanded source code 2 int y;
| & ¥ = 1 4 1% (fint *)0xZ200003% ; 7
3
e
=gl Gy
Expanded source code
{ o (F (Hint *)Bx2000039 = 100;
int *p = (int *)0x20000;
*p = 100;
y = 1 i Il ZDV check is because *p ~ [-27"31, 2731-1] pernanently
/'l The pointer out of bounds is because 0x20000
/1 may address anything of any |ength
/1 NIV check on *p is as a consequence
This can be addressed by defining registers as regular variables:
Replace By
Hdefine X .... Int X
int *p; int _p;
#define p (& p)
Note Check that the chosen variable name (p in this
example) doesn’t already exist
int *p; vol atile 1nt _p;
int *p = &p;

The volatile section discusses an approach which will help avoid the orange check on the pointer dereference, but retains the

representation of a “full range” variable.

Release 2007a+ 314/546
Revision 4.2 vA



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

8.2.20.1.2. The NULL pointer case

Consider the NULL address, viz.

#define NULL ((void *)0)

* It is illegal to dereference this NULL address;
* 0 isnot treated as an absolute address.

*NULL = 100; // produces a red - [llegal Dereference Pointer (1DP)

*  Assuming these declarations:-
int *p = 0x5;
volatile int vy;

. and these definitions:-

#define NULL ((void *) 0)
#defi ne RAM MAX ((int *)Oxffffffff)

*  consider the code snippets below.

While (p !'= (void *)0x1)
p--; // term nates

0x1 is an absolute address, it can be reached and the loop terminates
for (p = NULL; p <= RAM_MAX; p++)
d

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL pointer is forbidden.
While (p !'= NULL)

*p = 0; // illegal dereference of pointer

=0; /1l deref erence of a pointer

'When p reaches the address 0x0, there is an attempt to considered it as an absolute address
In effect, it is an attempt to dereference a NULL pointer — which is forbidden.
[Note that in this case, the is because the execution of the code here is ok ( ) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

*  Thanks to the default behaviour of PolySpace, it is easy to automatically stub a function whose purpose is to copy
data from/to RAM or to compute a checksum on RAM.

* If a function is supposed to copy calibration data, it should also be stubbed automatically.

*  Ifthe purpose of a function is to map EEPROM data to global variables, then a manually written stub is essential to

Release 2007a+ 315/546
Revision 4.2 vA



ensure the assignment of the correct initialisation values to them.

Release 2007a+ 316/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.20.1.3. Comparing address

PolySpace only deals with the information referred to by a pointer, and not the physical location of a
variable. Consequently it does not compare addresses of variables, and makes no assumption
regarding where they are located in memory.

Consider the following two examples of PolySpace behaviour:
int a,b;

if (& > &) // condition can be true and/or false
{ } /1 both branches are reachabl e

el se

{ } /1 both branches are reachabl e

and

int X, z;

voi d mai n(voi d)

{ int i;
X = 12;
for (i=1;, i<= Oxffffffff; i++)
{

“((int *)i) = 0;
}
z =1/ x; Il ZDV green check because Pol ySpace doesn't consider any

/1l relationship between x and its address

“X” is aliased by no other variable. No pointer points to “x” in this example, so as far as the PolySpace
analysis is concerned, “x” remains constantly equal to 12

Release 2007a+ 317/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.20.2. Understanding pointers
PolySpace doesn't analyse anything which would require the physical address of a variable to be taken into
account.

*  Consider two variables x and y. PolySpace analysis will not make a meaningful comparison of
“&x” (address of x) and “&y”
*  So, the Boolean (&x < &y) can be true or false as far as PolySpace analysis is concerned.

However, PolySpace analysis does keep track of the pointers that point to a particular variable.

*  So, if ptr points to X, *ptr and X will be synonyms.

Related subjects:
8.2.20.2.1. Address alignment: the bitfield example

8.2.20.2.2. How does malloc work for PolySpace?
8.2.20.2.3. Structure Handling

Release 2007a+ 318/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.20.2.1. Address alignment: the bitfield example

Structure size depends on bit alignment.

Consider the following example, where an attempt is made to map a character to a bitfield.
struct reg {
unsigned int a: 5;
unsigned int b: 3;

b
int main()
{
vol ati |l e unsi gned char c;
struct reg *r;
= (struct reg *) &c;
if (r-> == 10)
return 1;
return O;
}

Consider a 32 bit target architecture (so int are 32 bits, i.e. 4 bytes). The size of a bit field is the size of
the type of its elements. In the example above, the elements in the bit field are unsigned int, hence the
size is 4 bytes. Since this is greater than 1, the structure reg cannot be contained in the char c.

This can be solved by using the unsigned char type for the elements in the bit field. The size of the bit
field is then 1 byte and there is therefore no red error.
struct reg {

unsi gned char a: 5;

unsi gned char b: 3;
1
int main()
{

vol ati |l e unsi gned char c;

struct reg *r;

= (struct reg *) &c;
if (r->a == 10)
return 1;
return O;

}

Note that you must also use the option -allow-non-int-bitfield to implement this solution, since this is an
extension to the ANSI standard.

Release 2007a+ 319/546
Revision 4.2 vA



PonSpace

Previous

TECHNOLOGIES

Back to table of contents

8.2.20.2.2. How does malloc work for PolySpace?

PolySpace analysis accurately models malloc, such that both the possible return values of a null pointer and the
requested amount of memory are taken into account.

Consider the following example.
voi d mai n(voi d)

{
char *p;
char *q;
p = malloc(120);
q = p;
g="'a; [/ results in an
}

This code will avoid the orange dereference:

voi d mai n(voi d)

{

char *p;

char *q;

p = malloc(120);

q = p;

if (p!'= NULL)

*g="a,; [/l results in a green dereference check

}

Release 2007a+
Revision 4.2 vA

der ef erence

320/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents

8.2.20.2.3. Structure Handling

Related subjects:

Release 2007a+
Revision 4.2 vA

8.2.20.2.3.1. Data mapping into a structure

8.2.20.2.3.2. Mapping of a small structureinto a bigger one

8.2.20.2.3.3. Partially allocated pointer (-size-in-bytes)

8.2.20.2.3.4. Pointer to a structurefield

8.2.20.2.3.5. | have ared when reading afield of one structure

321/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.20.2.3.1. Data mapping into a structure

It often happens that structured data are read as a char array. Before manipulating them it might be
desirable to map those data into a structure that reflects their organization. In the following example an

IDP warning ( check) at line 22 suggests that the correctness of the code needs to be
confirmed.

1

2

3 t ypedef struct

4 {

5 unsi gned int Msgld;
6 uni on {

7 float fltv;

8 unsigned int intv;
9 } Msgbody;

10 } Message;

11

12 i nt random.i nt(void);

13 Message *get _nsg(voi d);
14 void wait_idl(void);

15

16 voi d treatment _nsg(char *nsQ)
17 {

18 Message *ptrMsg;

19

20 ptrMsg = (Message *)nsg;

21 if (ptrMsg !'= NULL) {

22 if (ptrMsg-> ) { // IDP Warning: pointer may be outside its
bounds

23 /1

24 }

25 }

26 }

27

28 int main (void) {

29

30 Message *nsg;

31

32 whil e(randomint()) {

33 msg = get _nsg();

34 i f (nsg) treatnment _nsg((char *)nsQ);

Release 2007a+ 322/546
Revision 4.2 vA



35 wai t _idl();

36 }

37 return O;

38 }

Release 2007a+ 323/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.20.2.3.2. Mapping of a small structure into a bigger one

For example, suppose that p is a pointer to an object of type t_struct and it is initialised to point to an
object of type t_struct_bis.

Now suppose that the size of t_struct_bis is less than the size of t_struct. Under these circumstances,
it would be illegal to dereference p because it would be possible to access memory outside of
t_struct_bis.

Consider the following example.

1 #i ncl ude <mall oc. h>

2

3 t ypedef struct {

4 int a;

5 uni on {

6 char c;

7 float f;

8 } b;

9 } t_struct;

10

11 voi d mai n(voi d)

12 {

13 t_struct *p;

14

15 /1 optimze nenory usage

16 p = (t_struct *)nalloc(sizeof (int)+sizeof(char));
17

18 p->a = 1; // I1DP ERROR not allowed to deference p
19

20 }

Release 2007a+ 324/546

Revision 4.2 vA



Previous

PO'YSPM..M.H

Back to table of contents

dCe

8.2.20.2.3.3. Partially allocated pointer (-size-in-bytes)

According to the ANSI standard, the whole of a structure must be populated for that structure to be
valid. In this case, the pointer is said to be fully allocated. A pointer is said to be partly allocated when
only the first part of a structure is populated. In some development environments, that approach is
tolerated despite the ANSI stance.

By default, PolySpace strictly conforms to the standard and checks for adherence to it. A more tolerant
approach can be specified by using the -size-in-bytes option. So, depending on the -size-in-bytes

option, when a partially allocated pointer is encountered during a PolySpace analysis, the first elements
of the allocated object may or may not be considered as valid.

First consider the following example. (A second example follows it to illustrate how this might apply to
pointer arithmetic within a structure)

~No o h WNPRE

t ypedef struct
t ypedef struct

little { int a;
_big { int a;

int mai n(void)

{

BIG *p =
volatile int vy;

With -size-in-bytes option

9 if (p==((void *)0)) return O;
10 if(y) { p-a =0; } // green
11 if(y) { p->b =0; } // green
12 if(y) { p->c=0; } /] red
}

Default launching option

9 if(y) { p->a=0; } /] red
10 if(y) { p->b=0; } /] red
11 if(y) { p->=0; } /] red
12

13 if (p==((void *)0))

14 return O;

15 el se

16 return 1; // dead code
17 return 1;

Release 2007a+
Revision 4.2 vA

mal | oc(si zeof (LITTLE)) ;

int b;
int b;

int c;

} LI TTLE;
} BIG

325/546



18 )

With the standard launching option, a pointer that has not been allocated to a complete structure is
considered invalid, or NULL (as shown in the dead code).

This second example illustrates how this might apply to pointer arithmetic within a structure
typedef struct _inside { int a; int b; } | NSI DE;
typedef struct _outside { int a; INSIDE x; } OUTSI DE;

QUTSI DE out :

voi d mai n(voi d)
{
unsi gned char *ptr = (unsigned char *) &out;
INSIDE *p = (INSIDE *)(ptr + sizeof(int));

©CoOoO~NOOOThr~WDNPE

With -size-in-bytes option
11 p->b = 100; // green

Default launching option
11 p->b = 100; // red

With the default launching option and in accordance with the ANSI standard, the size of the INSIDE
structure function implies that there is only one such structure within the OUTSIDE structure.
Therefore, p has passed that one, and is out of bounds. With the -size-in-bytes option, the dereference
check is green because since the pointer remains within the structure.

Release 2007a+ 326/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

8.2.20.2.3.4. Pointer to a structurefield

According to the ANSI C standard, pointer arithmetic is to be independent of the size of the object (structure or
array) to which the pointer points. By default, PolySpace strictly conforms to the standard and checks for
adherence to it.

In some development environments an approach that does not recognize that requirement is tolerated, despite the
ANSI stance. Under those circumstances, results are likely to include red pointer out of bounds checks
unexpectedly.

A more tolerant approach can be specified at launch time. Consider the following examples.

char *p; // the size of the object pointed to is unknown,
/1 but arithnmetic on this pointer is well defined.

Il p=p+5 wll increnent the |ocation pointed to by 5 bytes (if the
size of a char is 1 byte)
int x; /'l assuming that an int is 4 bytes

p = &; *p =0; // the first byte of x

p++, *p = 0; /'l the second byte of x
p++; *p = 0; /1l the third byte of x
p++, *p = 0; /1l the fourth byte of x
p++; *p 0; /1l an out of bound access

For structures, the same behaviour can be applied.
struct { int a; int b; } x;
char *p = &.a; // the pointed object is not the structure but the field

*p = 0; /[l it is the first byte of x.a

pt++; *p = 0; /1l it is the second byte of x.a

pt++; *p = 0; /1l it is the third byte of x.a

p++; *p = 0; /1l it is the fourth byte of x.a

p++; *p 0; /[l here is an out of bound access because we are out of the
field

If you wish to tolerate an approach which allows a pointer to go from one field to another, you can do so by using
the —size-in-bytes option together with the -allow-ptr-arith-on-struct option . When a pointer points to a field in a
structure, you will then be allowed to access other fields from this pointer. Note that as a consequence, any other
"out of bound" accesses in the code will be ignored.

An alternative solution is to make your variable point to the structure rather than to the field, as follows:
struct { int a; int b; } x;
char *p = &x; /'l the pointed object is the structure

*p = 0; /'l we are nodifying x.a (first byte)
p++; *p = 0; /'l we are nodifying x.a (second byte)
Release 2007a+ 327/546

Revision 4.2 vA



p= 0; /1 we are nodifying x.a (third byte)
p++; *p = 0; /1 we are nodifying x.a (fourth byte)
p 0 /'l we are nodifying x.b (fifth byte of the structure)

A further alternative is to follow the ANSI C recommendation to use the “offsetof()” function, which jumps to the
corresponding offset within the structure:-

#i ncl ude <stddef. h>

typedef struct m{ int a; int b; } S

S X;

char *p = (char *) & + offsetof (S,b); // points to field b

Release 2007a+ 328/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.2.20.2.3.5. | haveared when reading afield of one structure

Consider the following example.

5 t ypedef struct {

6 unsi gned char c1;

7 unsi gned char c2;

8 } my_struct;

9

10 I nt mai n(voi d)

11 {

12 nmy _struct v;

13 unsi gned short x=0, y=0;
14

15 V. Ccl=9;

16 v. c2=15;

17 X = *((unsigned short *)&v.cl);

Just like in the example for structures, the object pointed to is the field in the structure,

not the structure itself. Therefore, it is only possible to navigate inside this field. A
short variable occupies more memory than a char, so it is a red pointer out of bounds.

This can be addressed by replacing
X = *((unsigned short *)&v.cl);

with
= (v.cl << sizeof(v.c2)*8 ) | v.c2;

This solution also ensures that the code is no longer target dependent.

Release 2007a+ 329/546
Revision 4.2 vA



y Q: HNOLOGIES
Previous Back to table of contents Next

8.2.21. Non Termination of Call or Loop
NTC and NTL are informative red checks.
« They are the only red checks which can be filtered out as shown below
« They don't stop the analysis
« As for other red checks, code found after them are grey (unreachable)
« These checks may only be red. There are no “orange” NTL or NTC checks.

= They can reveal a bug, or can simply just be informative

INTL In a Non Terminating Loop, the break condition is never met. Here are some examples.
while(1) {function_call(); } // informative NTL
while(x>=0) {x++; } // where x is an unsigned int. This may reveal a bug?

for(i=0; i<=10; i++) my_array|i] = 10; // where “int my_array[10];” applies. This red NTL reveals a
bug in the array access, flagged in orange

ptr = NULL; for(i=0; i<=100; ) *ptr=0; // the first iteration of the loop is red, and therefore it is
flagged as an NTL. The “i++” will be grey, because the first iteration crashed.

INTC Suppose that a function calls f(), and that function call is flagged with a red NTC check. There
could be five distinct explanations:

1. *“f" contains a red error;
2. “f"contains an NTL ;

3. “f"contains an NTC;
4

. “f" contains an orange which is context dependant; that is, it is either red or green.
For this particular call, it makes the function “f” crash.

5.  “f"is a mathematic function, such as sqrt, acos which has always an invalid input
parameter

Remember, additional information can be found when clicking on the NTC

Note that a sqrt check is only coloured if the input parameter is never valid. For instance, if the variable x may take
any value between -5 and 5, then sqrt ( x) has no colour.

The list of constraints which cannot be satisfied (found by clicking on the NTC check) represents the variables that
cause the red error inside the function. The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

Release 2007a+ 330/546
Revision 4.2 vA



« where the variable has a given value; and
= Where the variable is not initialised. (Perhaps the variable is initialised outside the set of files under analysis?).

If a function is identified which is not expected to terminate (such as a loop or an exit procedure) then the -known-
NTC function is an option. You will find all the NTCs and their consequences in the k-NTC facility in the Viewer,
allowing you to filter them.

Related subjects:
8.2.21.1. Non Termination of Call: NTC

8.2.21.2. Known Non Termination of Call: k-NTC
8.2.21.3. Non Termination of Loop: NTL
8.2.21.4. Arithmetic expressions. NTC

Release 2007a+ 331/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.21.1. Non Termination of Call: NTC

This is a check to establish whether a procedure call returns. It is not the case when the procedure
contains an endless loop or a certain error, or if the procedure calls another procedure which does not
terminate. In the latter instance, the status of this check is propagated to caller.

Consider the following example.

1

2

3 void foo(int x)

4 {

5 int vy;

6 y =1 X; /1 Warning ZDV: its depends of the context
7 while(1l) { /'l NTL ERROR: | oop never termnates
8 if (y!'=x){

9 y =17 (y-x);

10 }

11 }

12 }

13

14 voi d mai n(void) {

15 volatile int _Xx;

16

17 if (%)

18 foo(0); // NIC ERROR Zero D Vision (ZDV) in foo

19 if (%)

20 foo(2); // NIC ERROR: Non Term nation Loop (NTL) in foo
21

22 }

23

In this example, the function foo is called twice in main and neither of these 2 calls ever terminates.

1. The first never returns because a division by zero occurs at line 6 (bad argument value),

2. The second never terminates because of an infinite loop (red NTL) at line 7.
Also with reference to the example and as an aside, note that by using either the -context-sensitivity
"foo" option or the -context-sensitivity-auto option at launch time it would be possible for PolySpace to
show explicitly that a ZDV error comes from the first call of foo in main.

Finally, note that an NTC check can only be red or not coloured.

Release 2007a+ 332/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.21.2. Known Non Termination of Call: k-NTC

By using the -known-NTC option with a specified function at launch time it is possible to transform an
NTC check to a k-NTC check. Like NTC checks, k-NTC checks are propagated to their callers.
Functions designed not to terminate can then be filtered out through the use of the appropriate filter in
the viewer.

Consider the following example, supposing that -know-NTC "SysHalt" option has been applied at
launch time

1

2 /* external get data function */

3 extern int get _data(int *ptr,void *data);
4 extern int printf (const char *, ...);

5

6 /'l known NTC function

7 void SysHalt (int val ue)

8 {

9 printf("Halt value %", val ue);

10 while (1) ; /1 NTL ERROR Loop Never Term nate
11 }

12

13 #define K 1

14 I nt mai n(voi d)

15 {

16 int data, *ptr = NULL;

17 int status = CK

18

19 /'l get next store

20 status = get data(ptr, (void *)&data);
21 if (status !'= OK)

22 SysHal t (status); /'l k-NTC check: Call never
term nate

23

24 return(0);

25 }

In the example, the relevant NTC check is converted to a k-NTC one.

Release 2007a+ 333/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

8.2.21.3. Non Termination of Loop: NTL

This is a check to establish whether a loop (for, do-while or while) terminates. Consider the following

example:

{

O©CoOoO~NOOUITE WDNPF

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24}

/1 Function prototypes
voi d send_dat a(doubl e data);
voi d updat e_al pha(double *a);

voi d mai n(voi d)

vol atil e double _acq;
doubl e acq, filtered acq, al pha;

Il 1Init
filtered _acq = 0.0;
al pha = 0. 85;

while (1) { /I NTL ERROR: Non Term nation Loop
/1 Acquisition
acq = ;
/'l Treat ment
filtered acq = acq (1.0 ) filtered_ acq;
/1 Action
send _data(filtered acq);
updat e_al pha( &l pha) ;

In the example, the continuation condition is always true and the loop will never exit. PolySpace will
raise an error in trivial examples such as this, and in much more complex circumstances.

Consider this second analysis. When an error is found inside a for, do-while, or while loop, PolySpace
will not continue to propagate it.

{

a b~ wWwNPEF

Release 2007a+
Revision 4.2 vA

voi d mai n(voi d)

int i;
doubl e twent yFl oat[ 20] ;

334/546



6
7 for (I =0; I <= 20; 1++) { /] NIL ERROR propagati on of OBAl ERROR
8 twentyFloat|i] = 0.0; /1 OBAI VWarning: 20 verification with i
in [0,19] and one ERRORwith i = 20

9

1

}
0 }

At line 8 in this second example, the red OBAI related to the 21th execution of the loop has yielded the
orange check. The 20 first executions would be no problem, so this orange warning represents a
combination of red and green checks.

Note that an NTL check can only be red or uncoloured.

Release 2007a+ 335/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8.2.21.4. Arithmetic expressions: NTC

This is a check to establish whether standard arithmetic functions are used with valid arguments, as
defined in the following:

1. Argument of sqrt must be positive (ISO/IEC 9899 section 7.5.5.2)

2. Argument of tan must be different from pi/2 modulo pi (ISO/IEC 9899 section 7.5.2.7)
Argument of log must be strictly positive (ISO/IEC 9899 section 7.5.4.4)
Argument of acos and asin must be within [-1..1] (ISO/IEC 9899 sections 7.5.2.1 and 7.5.2.2)
Argument of exp must be less than or equal to 709 (ISO/IEC 9899 section 7.5.4.1)
Argument of atanh must be within ]-1..1[ (ISO/IEC 9899 section 7.12.5.3)
. Argument of acosh must be greather or equal to 1 (ISO/IEC 9899 section 7.12.5.1)
A domaln error (such that errno returns EDOM) occurs if an input argument is outside the domain over
which the mathematical function is defined. A range error occurs (such that errno returns ERANGE) if
the result cannot be represented as a double value. In the latter case, the function returns O if the result
is too small, or HUGE_VAL with the appropriate sign if it is too big.

NoO U AW

Consider the following example

1

2 #i ncl ude <mat h. h>

3 #i ncl ude <assert.h>

4

5 extern int random.int(void);

6

7 i nt mai n(voi d)

8 {

9

10 vol ati |l e doubl e dbl _random

11 const double dbl one = 1.0;

12 const doubl e dbl none = -1.0;

13

14 doubl e sp = ;
15 doubl e p = |
16 doubl e sn = |
17 doubl e n = |
18 double no trig val neg = ;
19 double no trig val pos = ;
20 doubl e pun = ;
21 doubl e res;

22

23 /| assert is used here to redefine range val ues of variables
24

Release 2007a+ 336/546
Revision 4.2 vA



25
26
27
28
29
30
31
ar gunent
32
ar gunent
33
ar gunent
34
ar gunent
35
ar gunent
36
ar gunent
37
ar gunent
38
ar gunent
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
ar gunent
60
61
ar gunment
62
ar gunment
63
ar gunment
64

Release 2007a+
Revision 4.2 vA

if (randomint())
positive
if (randomint())
in range [-1..1]
if (randomint())
in range [-1..1]
if (randomint())
in range [-1..1]
if (randomint())
in range [-1..1]
if (randomint())
in range ]-pi/2.
if (randomint())
strictly positive
if (randomint())
| ess or equal

res

res

res

res

res

res

res

res

[/ No information about asin or

if (randomint()) {
res asi n(
res acos(

}

.pil2

to 709

[

sqrt(sn);
asin(no_trig val neg);
asin(no_trig val pos);
acos(no_trig_val pos);
acos(no_trig_val neg);
tan(1l.5707963267948966) ;
l'og(n);

exp(710);

acos because of

)
)

Il

Il

Il

Il

NTC

NTC

NTC

NTC

NTC

NTC

NTC

NTC

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

random val ue

/'l hyperbolic functions are available in the fl oat

if (randomint()) {
res cosh(710);
res cosh(10.0);

}

i f (randomint()) res
if (randomint()) {
res tanh(1.0);

}

/1

if (randomint())
>= 1

el se

i f (randomint())
in]-21..1]

i f (randomint())
in]-21..1]

i f (randomint())
in]-21..1]

i f (randomint())

res

res
res

res

res

res

si nh(710);

I nverted hyperbolic functions

acosh(pun);

acosh(1.0);
atanh(no_trig val neg);

atanh(no_trig val pos);
at anh(dbl _none);

at anh(dbl _one);

/1

/1

range

NTC ERROR

NTC ERROR:

NTC ERROR:

NTC ERROR:

NTC ERROR:

need

need

need

need

need

need

need

need

Need

Need

Need

Need

Need

337/546



argunent in ]-1..1]
65

66 return O;
67 }

68

sgrt, tan, asin, acos, exp and log errors are derived directly from the mathematical definition of
functions. PolySpace highlights any definite problems by means of an NTC to show that this is where
execution would terminate. No NTC information is delivered when Verifier cannot determine the exact
value of the argument, (for asin and acos at lines 42 and 43). No range restriction is currently made for
hyperbolic functions.

The pow function benefits from a specific check POW.

Important

Due to a lack of precision in some areas, PolySpace is not always able to indicate a red NTC check on
mathematical functions even where a problem exists. In the following example involving a sqrt function,
neither an orange nor a red check is shown on linel6 even though the variable val2 is negative.

By default it is important to consider each call to any mathematical functions as though it had been

highlighted by an , and could therefore lead to a runtime error.
1

2 #i ncl ude <mat h. h>

3

4 extern int random.int(void);

5

6 i nt mai n(voi d)

7 {

8

9 doubl e val 1, val 2;

10

11 int i;

12 val2 = 5.0;

13 for (i =0 ; 1 <10 ; i++) {

14 val 2 = val 2 1.0;

15 }

16 vall = sgrt(val 2); // No check on sqrt
17 return ((int)val 1);

18 }

19

Release 2007a+ 338/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
8.2.22. Unreachable Code: UNR

This is a check to establish whether different code snippets (assignments, returns, conditional

branches and function calls) are dead, such that they can never be accessed during the normal

execution of the software. Dead, or Unreachable, code is represented by means of a coding on

every check, with supplementary UNR checks also being added.

Consider the following example.

1

2 #define True 1

3 #define False O

4

5 t ypedef enum {

6 I nt er nedi at e, End, Wi t, I nit
7 } enunttate;

8

9 /1l pure stub

10 int internmediate_state(int);

11 I nt random.int(void);

12

13 int State (enunttate stateval)

14 {

15 vol atile int random

16 int i;

17 if (stateval == Init) return Fal se;
18 return True;

19 }

20

21 int main (void)

22 {

23 int i, res_end;

24 enuntState inter;

25

26 res end = State(lnit);

27 if (res_end == Fal se) {

28 res _end = State(End);

29 inter = (enuntState)i nternedi ate state(0);
30 if (res_end || inter == VWait) {

31 inter = End;

Release 2007a+
Revision 4.2 vA

// UNR code on inter

339/546



32 }

33 /1l use of | not initialized

34 i f (randomint()) {

35 inter = (enunState)internedi ate state(i);
36 if (inter == Internediate) {

of NV ERROR

37 inter = End;

38 }

39 }

40 } else {

41 I = 1,

42 inter = (enunState)internediate state(i);
43 }

44 return res end,

45 }

46

I
I

I
I

Nl V ERROR
UNR code because

UNR code
UNR code

The example illustrates three possible reasons why code might be unreachable, and hence be

coloured

1. Atline 30 the first part of a two part test is always true. The other part is never evaluated,

following the standard definition of logical operator "||".

2. The piece of code after a red error is never evaluated by PolySpace. The call to the function on
line 35 and the line following it are considered to be dead code. Correcting the red error and re-

launching would allow the colour to be revised.

3. Atline 27, the test is always true (if-{ part), and the first branch is always executed.
Consequently there is dead code in the other branch (i.e. in the else part at lines 41 to 42).

Release 2007a+
Revision 4.2 vA

340/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

8.2.23. Value On Assignment: VOA

This is a check to establish the range or values which a variable may take, each time an assignment is
made to it. Such checks are only available when the -voa option is used at launch time. VOA checks
are only available on scalar variables.

Consider the following example.

1

2

3 t ypedef enum {

4 doFf=0, dOn

5 } t_digital ;

6

7 #defi ne MAX_ANA (9.999)

8 #define M N_ANA (-10.0)

9 #define ZERO ANA ((MAX_ANA - M N ANA)/ 2.0 - MAX _ANA)
10

11 fl oat get _analogic (int);
12 I nt get _digit (int);
13

14 t ypedef enum {Red, G een, Orange, Bl ack} VerifiercColor;

16 t ypedef struct {

17 float a;

18 VerifierCol or b;

19 int c;

20 } Record,;

21

22 I nt mai n(voi d)

23 {

24 volatile int var _int;

25 volatile float volatile float;

26 t _digital var_digit;

27 Record var _rec;

28 int i;

29 fl oat var_sensor;

30 VerifierColor var_color = Geen; /1l Currently no
VOA on enum

31

32 var _digit = dOf; /1 no VOA

Release 2007a+ 341/546
Revision 4.2 vA



33 var _sensor = (float)(ZERO ANA); [l VOA: {[expr] <=
FLT_MAX} and {FLT_M N <= [expr]}

34 for (i =0 /* VOA {[expr]=0} */ ; I <8 ; i++) { /] VOA {1<=[expr]
<:8}

35 var_sensor = get_anal ogic(i); /1 VOA: currently
not concise

36 var _digit = (t_digital)get digit(i); /'l no VOA

37 }

38

39 /'l Fl oat exanpl es

40 var_sensor = X /1 VOA: currently
not concise

41 var _sensor = MAX_ ANA; [l VOA: {[expr]
=9. 9989}

42

43 var_rec.a = var_sensor; /1 Curently no VOA
on structures

44 var_rec.b = var col or;

45 var _rec.c = 5;

46 }

Note that inspection points (IPT) can be used to discover the possible range of a variable at any point
in the code — not just where a value is assigned.

Release 2007a+ 342/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

8.2.24. Inspection Points: IPT

The use of #pragma Inspection_Point <var> in code submitted for an analysis (where <var> is a
scalar variable), instructs PolySpace to reveal the possible range of a variable at that point in the code.

Consider the example below.

1

2 typedef struct {

3 unsi gned char nsb;

4 unsi gned char | sb;

5 } intl6;

6

7 i nt mai n(voi d)

8 {

9 vol atil e unsigned char var_uc;

10 float var float;

11 int i;

12 intl6 val;

13

14 #pragma | nspection Point var_uc [l 1 PT: {main:var_uc=0.. 256}
15 =3

16 #pragma | nspection Point i [l 1TPT: {main:i=3}

17 val . nsb = 12;

18 val . I sb = ;

19 #pragma | nspecti on_Poi nt val /'l 1PT currently ignored
20 var float = 10.0;

21 #pragma | nspection_Point var_float // |IPT currently ignored
22

23 }

24

25

Note that inspection points at lines 19 and 21 are ignored.

Release 2007a+ 343/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9. PolySpace Methodological guide

This section will be of interest to Project managers, quality managers and developers who are looking to
understand PolySpace results, and are looking to optimise the timing of its use during the project development
cycle. The document suggests how PolySpace might best be applied at each phase of a typical project lifecycle.
The twin goals of productivity and quality are considered, and it is acknowledged that the criticality of the
application will affect the balance between them.

However, the following assumes that the primary goal is to achieve maximum productivity with no quality
defects. The document explains how to use PolySpace tools at each phase of the development cycle to aim for

such a goal, with the financial implications of implementing each recommendation is left for assessment by the
user.

How can I use PolySpace in my How can I dhange the process to
current process? get more out of PolySpace?

How can I improve the use of
PolySpace Verifier within my
software development process?

On given results, how can I find the  How can I get the best resulis?
maximum number of anom alies?

Release 2007a+ 344/546
Revision 4.2 vA



This guide suggests answers to the following questions.

Steps PolySpace usage PolySpace activities

COrange 1n selective mode?

q nd

Data : VWhat are the costs & benefits?
rules

[Which PolySpace activities
should be nsed?

[Which steps? Which PolvSpace

tools? Orange 1 exhaustive mode?

[When in my development

cvele? s
: Integration bugs

ZAAN

\

Development cycle Data flow / shared conflicts

It answers those questions by means of the following topics: an explanation of each PolySpace approach. A

“PolySpace approach” or “Approach” is defined in this context as the manner of use of PolySpace to achieve a
particular goal, with reference to a collection of techniques and guiding principles. These include suggestions of
different activities which might be completed before functional unit test or integration tests, depending on the
development process:

An explanation of the collection of techniques and guiding principles going to form each Approach.

Fixing red and grey — review run time errors and checks only
Selective orange review — review and find bugs quickly and efficiently. Suitable when time is

short, and the aim is to maximise the number of bugs discovered.

Exhaustive orange review — how much it costs and the value it brings at the unit phase and at the
integration phase

Shared data conflict detection — and the problems it can highlight

Data flow analysis

Integration bugs tracking

An explanation of the steps required to progress seamlessly from one approach to the next:
. Coding rules to allow an efficient exhaustive warning review.

Data rules to allow efficient integration bug tracking

Related subjects:
9.1. PolySpace usage

9.2. PolySpace activities

9.3. How to get the best results

9.4. Applying coding rulesto reduce oranges

Release 2007a+

Revision 4.2 vA

345/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.1. PolySpace usage

PolySpace tools can support two main objectives concurrently.
*  Reduction of testing and validations costs

«  Improvement of the software quality

PolySpace can be used in different ways depending on the context, the primary difference being in the approach used to exploit the
results generated. The following diagrams summarise the different approaches.

Important  Theaim here is not to compare the cost of certification processes, or of development processes with
or without coding rules. The graphs aim to compare the costs of typical processes with and without PolySpace.

When no coding rules are adopted
e During the coding activity, there are two recommended approaches:

A
Current process
(classical testing)
Bug Detection
Cost
PolySpace:
. File by file analysis
. Red and =
PolySpace: Selective
. File by file analysis
» Redand zre: > &
= - Software
Quality
L
Thefirst approach isto use only the red and grey results: fix thered bugs, and check the for abnormalities.

The second approach involves the same activities, and adds a partia review of the orange warnings. The aim isto find as many bugs as
possible, with very limited efforts. This approach finds more bugs and therefore improves the quality. It does involve more effort, but
the amount of time spent to find each bug remains very small.

Note Using PolySpace on one singlefileis efficient: even though there is no knowledge of thefile
context, experience shows that 50% of the bugs detected by PolySpace can be found locally.

Then, after.ebding, before the testing activity:
This symbol is used to indicate that when level of usage of PolySpace is has been successfully implemented the

development team can migrate to a more demanding (and more fruitful) one. This migration is not always desirable; it of course
depends on the project’ s context.

Release 2007a+ 346/546
Revision 4.2 vA



Current process
(classical testing)

Bug Detection
Cost

PolySpace:
#  Integration analyv=is
*  ERed and zrey

PolySpace:
- Integration analysis
» Bed and zrey

shared data conflicts

J Software

Quality

Again, thefirst approach isto use only thered and grey results: fix the red bugs, and check the dead code.

The second approach includes the same activities, and adds a partial review of the and of the

When coding rules have been adopted

Note The main difference here by comparison with the previous processes is with respect to the cost of
bug detection. When PolySpace is used in accordance with a set of coding rules, the bug detection cost is much
lower.

« thereare three recommended ways to use PolySpace, during the coding activity:

Current process
(with coding rules)

Bug Detection
Cost

PolySpace:
#  File by File analysis
. Red and Grey

PolySpace:
*  TFile by file anabms

#  BRedand gres

PolySpace:
#  File by file analy=is
*  Fed and gre;

Software
Cuality

.
L

Compared to the previous situation (where no coding rules are in place), an additional possibility exists. Instead of reviewing only
certain orange warningsin afile, al of them are systematically checked. Thisis possible as when the right coding rules are respected
(see the end of this section for recommendations). That leads to there being only a few orange checksin afile, and therefore checking

all of them is potentially very fruitful. A large proportion of those anomalies require some correction to the code, with some users
reporting up to 50%.

Then, after coding, before the testing activity:

Release 2007a+ 347/546
Revision 4.2 vA



Current process
(with coding rules)

Bug Detection

Cost
PolySpace:
*  Integration amalysis
PeolySpace: ' Eed a.u.d zrey
»  Integration analysis Bl }
- RE{:’ EII.d STe)
Software
Quality
-
“ Note It is also possible to migrate from a selective to an exhaustive when performing an

integration analysis, but this activity is very costly.

In a certification context

A “quality/qualification” approach where PolySpace replaces an existing activity. In this case quality is already high and maybe at a
“zero defects’ level, but PolySpace will reduce the cost of achieving such quality. In this context, PolySpace can replace the traditional
time consuming control and data flow analysis, as well as shared data conflict detection.

As an acceptancetool

The fourth and last approach implies the use of PolySpace as a method of meeting an acceptance criterion.

Related subjects:
9.1.1. Standard development process
9.1.2. Rigor ous development process. introducing tools and coding rules
9.1.3. A quality/qualification approach
9.1.4. Code acceptance criterion

Release 2007a+

348/546
Revision 4.2 vA



PolyS pace

Previous Back to table of contents Next

9.1.1. Standard development process

This approach is mainly for consideration by a project manager rather than a quality manager. It amsto improve
productivity rather than to prove the quality of the application being analysed.

The softwar e development process

This section describes how to introduce PolySpace to a standard software development process. For instance,
* InAda, no unit test tools or coverage tools are used: functional tests are performed just after coding

* InC, either no coding rules are present or they are not always followed.

Thefigure below illustrates the revised process, with PolySpace introduced in the tool chain. It will be used just before
functional testing.

Design : Coding PolySpace \ Functional v | Validation
r'-, FI"-. tests

The objective of using PolySpace

PolySpace will be used to improve the software quality and productivity. It will help the developer to find and fix bugs
much quicker than the existing process. It will also improve the software quality by finding bugs which would otherwise
be likely to remain in the software after delivery.

It doesn’t prove the robustness of the code because the prime objective isto deliver code of at least similar quality to
before, but to ensure that code is produced in a predictable timeframe with controlled and minimized delay and costs.
Another approach for this purpose is described in the next section.

The PolySpace approach

The way forward here is for PolySpace Desktop to be applied by devel opers or testers on a file-by-file/package-by-
package analysis basis. The users will use the default PolySpace Desktop options, the most prominent feature of which
isthe automatically generated “main” function. Thismain will call all unused procedures and functions with full range
parameters. The users will be required to fix red errors and examine gr ey code, and they will also do a

Release 2007a+ 349/546
Revision 4.2 vA



OTAMEE TEWIa W

M of bug found per mnute

OFAfEe TRView

Cost/benefits of a selective orange review

This selective orange review can be applied on specific Run Time Error categories, such as “Out of Bound Array Index”,
or on al error categories. This depends on each individual developer’s coding style.

It istrue that with this approach some bugs might remain in the unchecked oranges, but it represents a significant move
forward from the initial position. Coding rules would help further if more improvement is sought.

A complementary approach

A second approach is also possible which, unlike the first, focuses only on an increase in quality. If coding rules are
applied, this second approach will turn into a cheap and productive one as described by the second arrow on the
illustration.

Integration tests are also possible at this stage. Thisanalysis will be performed by PolySpace on larger modules, and the
orange review will be focused on Run Time errors which wer e not examined after the file-by-file/package-by-
package analysis.

For instance, if the project construction is such that scalar overflows can only be reviewed at integration phase, then
*  Theuser will ignore orange overflows with PolySpace Desktop when performing file-by-file analysis,

*  Hewill examine them with PolySpace Verifier.

I ntegration with configuration management tools

PolySpace can also be used by project managers to establish and test for transition criteria to proceed to file check-in

»  Daily check-in: PolySpace Desktop is applied to the file(s) currently under development. Compilation
must complete without the permissive option.

*  Preunit test check-in: PolySpace Desktop is applied to the file(s) currently under development.

*  Preintegration test check-in: PolySpace Verifier is applied to the whole project until compilation can
complete without the permissive option. This stage will differ from the daily check-in activity because link
errors will be highlighted here.

*  Prebuild for integration test check-in: PolySpace Verifier is applied to the whole project, with all
multi-tasking aspects accounted for as appropriate.

*  Prepeer review check-in: PolySpace Verifier is applied to the whole project, with al multi-tasking
aspects accounted for as appropriate.

For each check-in activity mentioned above, the transition criterion could be: “No bug found within the allocated time
defined by the process’. For instance, if the process defines that 20 minutes should be dedicated to a selective review, the
criterion could be: “no bug found during these 20 minutes’.

Release 2007a+ 350/546
Revision 4.2 vA



Costs and benefits

Using PolySpace Desktop to find unit/local bugsin this way will both reduce the cost of the software and improve the

quality:

* Red checksand bugsin . The number of bugs found thanks to these colours can vary from
one user to another, but experience shows that on average, around ¥4 of the analyses will reveal ared error
(s) and/or will revea bugsin code.

. . Experience suggests that the time needed to find one bug per file varies from 5 minutes

to 1 hour, and is typically around 30 minutes. This represents an average of two minutes per orange check

review, and atotal of 20 orange checks per package in Ada and 60 orange checks per filein C.

With this approach, using PolySpace to find integration bugs will increase the quality, but at a higher usage cost:

Release 2007a+
Revision 4.2 vA

e 75% of bugsarelocal in thistype of code: the selective orange review at integration phase reveals a
Ys of integration bugs, and the rest (%) of local bugs. Finding real integration bugs might require another
process which requires coding rules to be efficient.

*  Setup time: the time needed to setup the analysis can be higher due to alack of coding rules. Code
modifications might be needed. Most of these modifications cannot be automatic without changesin the
process.

* Anomaliesand complexity: In this configuration, any particular file will contain more oranges when
analysed with PolySpace Verifier than with PolySpace Desktop (about twice as many). These oranges are
likely to be anomalies, and will responsible for the orange check review becoming more time consuming.
A morestable software version impliesa later analysis. If PolySpace Verifier is used instead of
PolySpace Desktop, bugs might be revealed much later because a more complete version of the software can
only be provided at alater phase in the project.

 Anexhaustive orangereview can take 25 men-days for a 50000 line project. Thiswould represent
the effort where the aspiration is for bug free software, assuming that a 50000 line application contains
about 3000 orange checks

351/546



PonSpace

TECHNOLOGIES
Previous

Back to table of contents Next

9.1.2. Rigorous development process: introducing tools and coding
rules

Thisis of interest for both project and quality managers, who are likely to be interested in this approach.

The softwar e development process

This section describes how to use PolySpace within a process which has the following characteristics. In C, coding rules
are in place and a means exists to check that they are systematically applied.

The picture below describes the new process, with PolySpace introduced into the tool chain. It will be used just before
functional testing.

Design | } | Coding .| Coding PolySpace Functional "., Validation
|I'| [II'- I', F tesis |III
[ ) ‘| Bules \ \
' Y check- ':_ .:'
r /| g .' ' /
L / 5 ' / '
—Ilr l | L f
| / f #

The objective of using PolySpace

PolySpace will be used to increase both the software quality and its productivity. Note that a paragraph includes a set of
recommended coding rules for C language (the list is a subset of MISRA). These will alow high quality with low cost.

The PolySpace approach

Use PolySpace Desktop on afile by file analysis basis.

The“main” used to analyse each fileis very often automatically generated by the project, and not by
PolySpace Desktop (unlike the standard approach).

Initialisation ranges should be applied to input data. For instance, if avariable“x” isread by functions
inthefile, and if x can be initialized to any value between 1 and 10, this information should be included as
part of the analysis.

* [Optional] Some properties of output variables might be checked. For instance, if avariable“y” is
returned by afunction in the file and should aways be returned with a value in the range 1 to 100, then
PolySpace Desktop can flag instances where that range of values might be breached.
*  Rederrorswill be fixed and grey code examined, and an

The usage of permissive optionsis not advisable at this stage.

Note The distinguishing feature for this approach as compared with the standard approach is
that the orange check review is exhaustive here.

will be completed.

Release 2007a+ 352/546
Revision 4.2 vA



A complementary approach

A second approach is also possible. Use PolySpace Verifier at integration phase to track integration bugs, and review:-
* Red and grey integration checks,

»  Orange checks on code which produced green checks when analysed by Desktop.
»  Theremaining orange checks with a selective review: Integration bug tracking.

Costs and benefits

With this approach, using PolySpace Desktop to find bugs will typically bring the following benefits

« 35 per file, 3 per fileyielding an average of 1 bug per file. Typicaly, 2 of
these oranges might represent the same bug, and another might represent an anomaly.

* Anaverage of 2 anayses by PolySpace Desktop per fileistypical before the file can be checked-in to
the configuration management system.

*  Theaverage analysistimeisabout 15 minutes.

Note If the development process includes data rules (see section «2.4.9) which determine
how the data flow is designed, the benefits might even be higher. The data rules would implicitly
reduce the potential for PolySpace Verifier to find integration bugs.

With this approach, using PolySpace to find integration bugs might bring the following results. On atypical 50000 line
project:

» A selective orange check review might reveal one integration bug per hour of orange code review
and takes about after 6 hours, which long enough to review the main orange points throughout the whole
application. This represents a step towards an exhaustive orange check review. Spending moretimeis
unlikely to be efficient, and won’t guarantee that no bugs remain.

»  Anexhaustive orange review takes between 4 and 6 days, given that a 50000 lines of code application
might contain about 400-800 orange checks.

Release 2007a+ 353/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.1.3. A quality/qualification approach

Quality managers are likely to be interested in this approach.

The softwar e development process

This section describes how to use PolySpace within a process which includes coding and datarules. Such a
process istypical of a qualification environment, with existing activities which must be performed. Before the
introduction of PolySpace they will have been performed by hand, with classical testing methods, or using
previous generation tools. PolySpace will replace these activities, and reduce the cost of the process.

PolySpace is not intended to improve the quality which is already at the desired level. It will complete the same
tasks more efficiently, bringing improved productivity.

The objective of using PolySpace

PolySpace will be used to increase the productivity on existing activities, such as
e Dataand control flow analysis
e  Shared data detection

. Robustness unit tests.

The PolySpace appr oach

Depending on the activity replaced, both PolySpace Verifier and/or Desktop may be useful.

e  For dataand control flow analysis and shared data detection. PolySpace Verifier can be used on
the whole application or on a sub-section of the application.

e  For robustness unit tests (as opposed to functional unit tests). PolySpace Desktop might be used
in the same way as the one applied to the Rigorous development process.

Costs and benefits

The replacement of these activities can lead to a significant cost reduction. For instance, the time spent on data
and control flow analysis can drop from 3 months to 2 weeks.

Quality will also become much more consistent since a much greater part of the process will be automated.
PolySpace tools are equally efficient on a Friday afternoon and on a Tuesday morning!

Release 2007a+ 354/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.1.4. Code acceptance criterion

This is likely to be of interest for a quality manager in a company which is out-sourcing software
development, and who wishes to impose acceptance criteria for the code.

The software development process

This section describes how to define transition criteria for intermediate or final deliveries.

The objective of using PolySpace

The objective is to control and evaluate the safety of an application. The means for doing so could vary
from no red errors to exhaustive oranges review.

The PolySpace Approach

Either PolySpace Desktop or Verifier can be used at this stage, depending on the project size. The
example list of acceptance criteria below shows increasingly stringent tests, any or all of which may be
adopted.

. No compilation errors
. No compilation warning errors
. No red code sections
. No unjustified grey code section
. A selective/exhaustive orange review according to the development process
o 20% orange code sections reviewed or a time base threshold (described in the previous
sections)
o 100% orange code sections reviewed
. -20% concurrent access graph reviewed
. 100% concurrent access graph reviewed

Release 2007a+ 355/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2. PolySpace activities

Related subjects:
9.2.1. Reviewruntimeerrors. Fixred errors

9.2.2. Review dead code checks: why is grey code interesting?

9.2.3. How to find a maximum number of bugswithin an hour reviewing oranges.
selective orangereview

9.2.4. Cost and benefits of an exhaustive orange review at integration phase

9.2.5. Integration bug tracking

9.2.6. How to find bugsin unprotected shared data

9.2.7. Dataflow analysis

9.2.8. Data and coding rules

Release 2007a+ 356/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.2.1. Review run time errors: Fix red errors

All Run Time Errors highlighted by PolySpace are determined by reference to the language standard, and are
sometimes implementation dependant — that is, they may be acceptable for a particular compiler but unacceptable
according to the language standard.

Consider an overflow on atype restricted from -128 to 127. The computation of 127+1 cannot be 128, but
depending on the environment a “wrap around” might be performed with a resulting value of -128.

Thisresult is of course mathematically incorrect. If the value represents the atitude of a plane, this could result in
adisaster.

By default, PolySpace doesn’t make assumptions about the way a variable is used. Any deviation from the
recommendations of the language standard istreated asared error, and must therefore be corrected.

PolySpace identifies two kinds of red checks

*  Red errorswhich are compiler-dependant in a specific way. On some occasions a PolySpace
option may be used to allow particular compiler specific behaviour, and on others the code must be
corrected in order to comply. An example of a PolySpace option to permit compiler specific
behaviour would be the option to force “IN/OUT” ADA function parameters to be initialised.
Examplesin C include options to deal with constant overflows, shift operation on negative values,
etc.

e Allother red errors must be fixed. They are bugs.

Most of the bugs you'll find are easy to correct once they are identified. PolySpace identifies bugs
irrespective of their consegquence, or of the ease with which they can be corrected.

Release 2007a+ 357/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.2. Review dead code checks: why is grey code interesting?

Related subjects:
9.2.2.1. Functional bugs can be found in grey code

9.2.2.2. Structural coverage

Release 2007a+ 358/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.2.2.1. Functional bugs can be found in grey code

PolySpace finds different types of dead code. Common examples include:

»  Defensive code which is never reached

»  Dead code dueto a particular configuration

*  Librarieswhich are not used to their full extent in a particular context
*  Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical applications of embedded software,
analysed by PolySpace.
. A lack of parenthesis and operand priorities in the testing clause can change the meaning
significantly.
Consider aline of code such as
IFNOT aAND bORcAND d
*  Now consider how misplaced parentheses might influence how that line behaves ...
IFNOT (aAND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (aAND (b OR c) AND d)

*  Thetest of variable inside a branch where the conditions are never met;
Anunreachable“else” clause where the wrong variable is tested in the “if” statement
A variablethat is supposed to be local to the file but instead islocal to the function

*  Wrong variable prototyping leading to a comparison which is aways false (say)

Asisthe casefor red errors, the consequence of dead code and the effort needed to deal with it is unpredictable. It
can vary
*  From one week effort of functional testing on target, trying to build a scenario going into that
branch, and wondering why the functiona behaviour is altered, to
* A 3 minutes code review discovering the bug.

Again, asfor red errors, PolySpace Verifier doesn’t measure the impact of

Thetool provides alist of dead code. A short code review will enable you to place each entry from that list into
one of the five categories from the beginning of this chapter. Doing will identify known dead code and uncover
real bugs.

PolySpace experienceisthat at least 30% of revealsreal bugs.

Release 2007a+ 359/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.2.2. Structural coverage

PolySpace aways performs upper approximations of all possible executions. Therefore even if aline of codeis
shown in green, there remains a possibility that it is a dead portion of code. Because PolySpace made an upper
approximation, it could not conclude that the code was dead, but it could conclude that no run time error could be

found.
PolySpace will find around 80% of dead code that the devel oper would find by doing structural coverage.

PolySpace is intended to be used as a productivity aid in dead code detection. It detects dead code which might
take days of effort to find by any other means.

Release 2007a+ 360/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.3. How to find a maximum number of bugs within an hour
reviewing oranges: selective orange review

Note Before reading this section, it is necessary to understand how the user might
conclude the status of an check. Thisisexplained in alater section.

Suppose, for example, that the user wishes to spend the first hour of the day reviewing an analysis which was
performed overnight. Thisis an approach which can be adopted to enhance the quality of code under
development, perhaps supported by more extensive analysis as the project nears completion.

Experience suggests that such an approach can highlight 5 bugs in orange checksin such atimescale: “finding 5
bugs an hour”

Related subjects:
9.2.3.1. How?

9.2.3.2. Why?

9.2.3.3. In practice...

9.2.3.4. Step by step

9.2.3.5. Which category of checks should | choosefirst?
9.2.3.6. Exhaustive orangereview at unit phase

Release 2007a+ 361/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
9.2.3.1. How?
Focus on modules which have the highest selectivity in the application, where selectivity isthe
ratio of (green + + red) / (total number of checks)

*  Spend no more than 5 minutes per
* Review at least 50 checks an hour.

Release 2007a+ 362/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.3.2. Why?

* If PolySpace finds only one or two in amodule or function, thereis avery good
possibility that they are not caused by “basic imprecision”. Consequently, the concentration of bugs
in here will be higher than in those found elsewhere in the code.

« If you come across an which takes more than a few minutes to understand, it
might well be the result of inconclusive PolySpace analysis. To optimise the number of bugs found
in alimited time, you should move on to another check. A good rule of thumb isto spend no more
than 5 minutes on each check, remembering that the goal isto review at least 50 checks per hour to
maximise the number of bugs found.

Release 2007a+ 363/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.3.3. In practice...
For any particular function, PolySpace may better at detecting some kinds of Run Time Errors than
others. For instance, the analysis of one function may yield imprecise results from the analysis of Non
Initialised Variables (NIV) but very precise results from the analysis of overflows (OVFL). In the
analysis of another function, the precise opposite may be true.

So, the “high selectivity focus’ should be applied to each Run Time Error category separately.

Release 2007a+ 364/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.2.3.4. Step by step

Filter

1. Select onetype of RTE, such as Zero Division (ZDV) as shown in the example. Click on A | and
then click on the check type of interest (ZDV in the example)

el i CiOR: shE [ MY owre [FEOAT dpser | we [kNTC | WTL | UNR
Tool bar for checks
Here, all RTEs are filtered except ZDV
. Choose files/packages containing only 1 or 2 of the selected kind.
. Proceed with a quick code review on each , Spending no more than 5 minutes on each.
The goal isto identify the as apotential bug, inconclusive check or data set issue, navigating

the code using the call tree and the dictionary. If the check proves too complicated to explain, it may well be

the result of basic imprecision.
e Oncethisjob done, the user can select the “Verified” checkbox in the PolySpace Viewer, and
put an explanation of the check in the comment field (for instance, “inconclusive’, or “data set
issue” when calibration of <x> is set greater than 1007, ...)

. Select another type of RTE and repeat step 1-4.

Release 2007a+ 365/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.3.5. Which category of checks should | choose first?
The following sequence is recommended.
. Start with the four categories found to be the most likely to yield bugs, which are described in the

following sections.

* Next, use the Betafilter which will highlight the remaining categories most likely to include
any remaining critical Run Time Errors.

*  Finally, complete the remaining checks as time permits.

The impact made by the use of C coding rulesis huge, because they reduce complexity - a key factor in limiting
orange checks due to basic imprecision. The C constructions impacting each of the four are listed below.

»  Potential bug or data set issue. These are or ange checks representing genuine problems.
e Inconclusive check. These are or ange checks which mostly highlight design issues, not

addressed by this section.
e Basicimprecision.

*  Ungspecified ANSI behaviour
Complexity
*  Approximations made by the tool on specific constructions

MISRA rules have a huge impact on complexity and all unspecified ANSI behaviour. Some details of
approximations made by the tool are discussed following the section discussing MISRA rules.

Release 2007a+ 366/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.3.6. Exhaustive orange review at unit phase

Related subjects:
9.2.3.6.1. Without coding rules

9.2.3.6.2. With coding rules

Release 2007a+ 367/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.3.6.1. Without coding rules

An exhaustive orange review progresses at atypical rate of 50 or ange checks per hour. An hour spent on an
exhaustive check review is different to an hour spent on a selective orange review in several significant ways.

e Time

o Thefirst 10 minutes of the exhaustive check will be dedicated to the classification of 2/3 of
the orange as false anomalies.
0 Thelast 40 minutes will be used to track more complex bugs.

e Cost:

0 80% of the orange checkswill require only afew seconds of effort before a conclusion can
be reached. These are not integration bugs, so tracking the cause of an or ange check is often
much faster than the same activity in alarger piece of code.

o Thetypical time spent reviewing each or ange check would be about 1 minute.

Release 2007a+

368/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.3.6.2. With coding rules

The number of spurious or ange checks per file strongly depends on coding styles within the project. The
following coding rules are recommended, as are a subset of MISRA rules.

If the code follows the recommended MISRA subset, the count of checks per file will typically decreaseto 3
orange and 3 grey checks, hiding at |east one bug between them.

The review of the PolySpace results generated by a unit analysis would normally take no more than 15 minutes.

Release 2007a+ 369/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.4. Cost and benefits of an exhaustive orange review at
integration phase

Related subjects:
9.2.4.1. Benefits

9.2.4.2. Costs
9.2.4.3. Method

Release 2007a+ 370/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.4.1. Benefits

The purpose of this activity is to assess the probability of missing an orange containing a bug when performing a
“selective orange review”. This needs to be balanced with the cost of a bug l€eft in the code.

Release 2007a+ 371/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.4.2. Costs

Experience suggests that an average of 4-5 minutesreviewing time per orange check istypical. Four hundred
(400) such checkswill require 4 days of code review whereas a three thousands (3000) orange review will require
25 days.

If the checks are reviewed in the sequence suggested by the selective review approach, then the first 80% of these
checks will take a disproportionately small amount of time.

Release 2007a+ 372/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.4.3. Method

There are sometimes situations where files contain a particularly high number of orange checks compared with
the rest of the application. This may well highlight design issues.

Consider the four possible reasons for an orange check

1. Potential bug

2. Inconclusive analysis
3. Dataset issue
4. Basicimprecision

The method described in the previous chapter explains how to focus on finding potential bugs in the orange code.
WEe'll focus here on the second and third types. We are assuming that in the modules containing the most

, those checks will prove inconclusive. If PolySpace is unable to draw a conclusion, theimplication is
often that the code itself is very complex —which in turn can identify sections of code of low robustness and
quality.

Related subjects:
9.2.4.3.1. Inconclusive

9.2.4.3.2. Basic imprecision
9.2.4.3.3. Real bugs and data sets

Release 2007a+ 373/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.4.3.1. Inconclusive

The most interesting type of inconclusive check isidentified when PolySpace states that the code is too
complicated. In such acaseit isusually true that most in the problem file are related, and that
patient navigation will always draw the user back to a same cause — perhaps a function or a variable modified
many times. Experience suggests that such situations often focus on functions or variables which have also caused
trouble earlier in the development cycle.

Consider an example below. Suppose that
e asignedisan integer between -2"31 and 2"31-1

e anunsigned isan integer between 0 and 2"32-1
« Thevariable"Computed Speed" is copied into asigned, and afterward into an unsigned, than
signed, than added to another variable, and finally produces 20 overflows (OVFL).

Thereis no scenario identified which leads to areal bug, but perhaps the devel opment team knows that there was
trouble with this variable during development and the earlier testing phases. PolySpace has also found thisto be a
problem, providing supporting evidence that the code is poorly designed.

Release 2007a+ 374/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.4.3.2. Basic imprecision

On some rare occasions, amodule will contain alot of similar occurrences of a“basic imprecision”. Thisis most
likely to be caused by afunction close to the edge of an application, or in the stub routines.

In this case, PolySpace can only assist by means of the call tree and dictionary. This code needs to be reviewed by
an alternative activity — perhaps through additional unit tests or code review with the developer. These checks are
usually local to functions, so their impact on the project as awholeis limited.

Examples of extra activities might be

*  Checking an interpolation algorithm in a function

»  Checking calibration data consisting of huge constant arrays, which are manipulated
mathematically

Release 2007a+ 375/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.2.4.3.3. Real bugs and data sets
* If the data set analysed reveals real bugs, they should be corrected

e If it highlights potential input bugs (depending on the input data which might eventually be
used) then the source code should be commented.

Release 2007a+ 376/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.2.5. Integration bug tracking

By default, integration bug tracking can be achieved by applying the selective orange methodology to integrated
code. Each error category will be more likely to reveal integration bugs, depending on the chosen coding rules for
the project.

For instance, consider a function receives two unbounded integers. The presence of an overflow can only be
checked at integration phase, since at unit phase the first mathematical operation will reveal an orange check.

Consider these two circumstances

*  Whereintegration bug tracking is performed in isolation, a selective orange review will
highlight most integration bugs.

*  Whereintegration bug tracking is performed together with an exhaustive orange review at unit
phase.

In this second case, an exhaustive orange review will aready have been performed file by fileat a
unit level. Therefore, at integration phase only checksthat have turned from green to another
colour are worth assessing.

For instance, if afunction takes a structure as an input parameter, the standard hypothesis made at
unit level isthat the structureiswell initialised. Thiswill consequentially display agreen NIV check
at thefirst read access to afield. But this might not be true at integration time, where this check can
turn orange if any context does not initialise these fields.

These orange checks will reveal integration bugs.

Release 2007a+ 377/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.2.6. How to find bugs in unprotected shared data

Based on thelist of entry pointsin a multi-task application, PolySpace identifies alist of shared data and provides
several pieces of information about each entry:

 Thedatatype;

» Alist of reading and writing accesses to the data through functions and entry points;
*  Thetype of any implemented protection against concurrent access.

A shared dataitem isaglobal dataitem that isread from or written to by two or more tasks. It is unprotected from
concurrent accesses when one task can access it whilst another task isin the process of doing so. All the possible
situations are considered below.

* If thereisapossible scenario which would lead to such conflict for a particular variable, then a
bug exists and protection is required.

» If there are no such scenarios, then one of the following explanations may apply:

*  The compilation environment guarantees an atomic read/write access on variable of type
lessthan 1, 2 ... bytes, and therefore all conflicts concerning a particular variable type still
guarantee the integrity of the variable’s content. But beware when porting the code!
 Thevariableis protected by acritical section or a mutual temporal exclusion. Y ou may
wish to include this information in the PolySpace Verifier launching parameters and re-analyse.

It is also worth checking whether variables are modified which are supposed to be constant. Use the
variables dictionary.

Release 2007a+ 378/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.7. Dataflow analysis

Data flow analysisis often performed within certification processes - typically in the avionic, aerospace or
transport markets.

This activity makes heavy use of two features of PolySpace results, which are available any time after the Control

and Data Flow analysis phase.
o  Cadl tree computation
» Dictionary containing read/write access to global variables. (This can also be used to build a
database listing for each procedure, for its parameters, and for its variables.)

PolySpace can help you to build theses results by extracting information from both the call tree and the dictionary.

Release 2007a+ 379/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.2.8. Data and coding rules

Datarules are design rules which dictate how modules and/or files interact with each other.

For instance, consider global variables. It is not always apparent which global variables are produced by agiven
file, or which global variables are used by that file. The excessive use of global variables can lead to resulting
problemsin adesign, such as

*  File APIs (or function accessible from outside the file) with no procedure parameters,

*  Therequirement for aformal list of variables which are produced and used, as well asthe
theoretical ranges they can take as input and/or output val ues.

Release 2007a+ 380/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3. How to get the best results

Related subjects:
9.3.1. Reduce oranges step by step

9.3.2. Generic objectives. a balance between precision and analysistime
9.3.3. Options at launching time

9.3.4. How to conclude an orangereview

9.3.5. Duration of Analysis

Release 2007a+ 381/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

9.3.1. Reduce oranges step by step

Although PolySpace is effective and straightforward to launch with the minimum of effort, you may find
that some applications would benefit from some code preparation in order to streamline the job of
working through the resulting orange checks. There are four primary approaches which may be
adopted in isolation or in combination.

Apply some recommended coding rules. This is the most efficient means to reduce oranges.

Implement manual stubbing of previously missing (and therefore automatically stubbed) functions.

Specify call sequences with care.

Constrain some data assignments. Conventional testing analyses a single set of data, whereas

PolySpace can analyse your module for problems by taking into account all possible data values. If the
range of possible values is specified more precisely than the default “full range” approach, then there

will be less “noise” in the form of orange checks resulting from “impossible” values.

Release 2007a+ 382/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.3.2. Generic objectives: a balance between precision and
analysis time

The methodology objective is quite simple: “To get the most precise resultsin the time available’.

PolySpace needs to be fast and precise.

e If ananalysistakes an eternity and the results contain the maximum possible number of
, red and green checks, thisanalysisis not useful because of the time spent waiting for the
results.

* If ananalysisisvery quick but contains only , the analysiswon’'t be very useful
because of the large number of manual checks to be performed.

Using PolySpace is a compromise between analysis time and precision. Factors such as the amount of time the
developer has to assign to using PolySpace, and the stage in the V cycle a so influence the compromise. Consider
for example the following scenarios that require the PolySpace to be used in different ways:

e Unit testing phase: before going to lunch, a developer starts an analysis. After returning
from lunch the developer will analyse PolySpace results for a maximum of one hour.

* Integration/module testing: before going home, a developer starts an analysis and will
spend the next morning analysing the results.

» Validation/acceptance testing: the devel oper |eaves the office on Friday evening and starts
an analysis. The developer will spend the following week analysing the results.

Note So analysis time and precision depends on how long the devel oper wants to
wait for the results and the amount of time available to review the results. It can happen that
an analysis never ends. The user might need to split his application.

Note With knowledge of the tool, users will choose one of the four precision, —quick
(PolySpace C only), —00, -01,-02, or —O3 options before applying it to their process. It is
implicit that a higher precision will require alonger analysistime — but will yield morered,
green and code and fewer oranges.

Most of the time, the first analysis should be in “—quick” mode.

Note All activities and methods relating to results analysis remain unchanged
irrespective of the precision selected (—00, -01,~02 or -O3 in Adaand C, and —quick in C).

Release 2007a+ 383/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.3. Options at launching time

Related subjects:
9.3.3.1. Vary the precision level

9.3.3.2. Apply Softwar e safety level wisely

9.3.3.3. Add precision constraints at the application periphery via stubs
9.3.3.4. Describe multitasking behaviour properly

9.3.3.5. Tune the advanced parameters

Release 2007a+ 384/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.3.1. Vary the precision level

One way to affect precision isto select the algorithm that will be used to model the cloud of points. The exact
method of modelling is managed internally, but you can influence it by selecting the —quick (only in C or C++
language), —00, —01, -0O2 or —O3 precision level. Y ou can also select a particular precision for a specific body (in

Ada) or aCfile(in C).

The methods used by Verifier to represent the datainternally are reflected in the level of precision to be seenin
the results. Asillustrated below, the same orange check which results from alow precision analysis will become
green when analysed at a higher precision.

Operation: 1 / (x-v)

':rr

Vary the precision rate

Release 2007a+ 385/546
Revision 4.2 vA



y Qz HNOLOGIES
Previous Back to table of contents Next

9.3.3.2. Apply Software safety level wisely

Abstract

What are the differences between analysis levels

Explanation

There follows an example of the distinction between Safety Analysislevels 1, 2 and 3. The deeper the analysis goes, the
more precise it is. Depending on the backward/forward dependencies, oranges will be solved at the Safety Analysislevel 1,
and some later in level 2 or 3.

Oneway to effect precision isto select which algorithm will model your cloud of points. The modelling is
internal, and represented by a precision level ranging from 0 to 2. Y ou can select a particular precision level for a specific
body, which might differ from the default value for the rest of the code.

* Thelevel of an analysisisthe depth of analysis of PolySpace. It starts with Safety Analysis 1 (which approximates
to unit analysis) and normally goes up to level 4 (although it can go further if exceptional circumstances requireit). Each
iteration corresponds to a deeper level of propagation of calling and called context, asillustrated below. A level of iteration
Is selected for the whole application and unlike the precision level, it cannot be varied on a body-by-body basis.

PolySpace performs 4 levels of Software Safety Analysis by default. Below is an example of the distinction between Safety
Anaysislevels 1, 2 and 3; the deeper the analysis goes, the more preciseiit is. Depending on the backward/forward
dependencies, will be resolved into red, green or grey at the Safety Analysislevel 1 or later inlevel 2, 3 or 4.

Theleve of an analysis represents the number of iterations performed by PolySpace. Each iteration corresponds to a deeper
level of propagation of calling and called contexts. As an example, adivision by an input parameter of a function might
produce an during Level 1 analysis and then subsequently turn into green during level 2 or 3. PolySpace gains a
more accurate knowledge of x when the value is propagated deeper. Unlike the precision which is tuned for specific
modules, the level of safety analysisis set for the whole application.

Safety Analysis Level 1 Safety Analysis Level 2 Safety Analysis Level 3
void ratio void ratio void ratio
{ (float x, float *y) (float x, float *y) (float x, float *y)
* \/— * . { {
“y=(abs(x-Ty) ) L(x+1y) “y=(abs(x-*v)) [ (x+Y); “y=(abs(x-*v)) [ (x+*V)
t } t
void Ievel 1 (flgat X, void level 1 (float x, void level 1 (float X,
float vy, float t) float y, float *t) float y, float *t)
{ float v; { float v; { float v;
vV =y
. _ = Vi V=Y
ratio (x, &y); ratio (x, &); ratio (x, &y);
Release 2007a+ 386/546

Revision 4.2 vA



}

float |evel 2(float v)

{
float t;

t = v;
| evel 1(0.0, 1.0, &t);
return t;

}
voi d mai n(voi d)
{

float r,d;

d= level 2(1.0);
=1.0/ (2.0 - d);

t = 1.0/ (v - 2.0%* x);

¥t = 1.0/(v - 2.0 * x);
}

float |evel 2(float v)

{
float t;

t = v,
| evel 1(0.0, 1.0, &t);
return t

}

voi d mai n(voi d)
{

float r,d;

d= level 2(1.0);
=1.0/ (2.0 - d);

*t = 1.0/ (v - 2.0 * Xx);

}

float |evel 2(float v)

{
float t;

t =v;
level 1(0.0, 1.0, &t);
return t;

}

voi d mai n(voi d)

{
float r,d;

= level 2(1.0);
=1.0/ (2.0 - d);

=~ o

Release 2007a+
Revision 4.2 vA

387/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.3.3. Add precision constraints at the application periphery via stubs

Another mean to increase the selectivity isto indicate PolySpace Desktop that some variables (detailed here after)
might vary between some functional rangesinstead of the full range of the considered type.

It concerns mainly two items from the language

e Parameters passed to functions.

 Variables content, mostly globals, which might change from one execution to another: typicaly,

calibration data, mission specific data. These variables might be read directly within the code, or read
through an APl of functions.

Related subjects:
9.3.3.3.1. Reducethe cloud of points
9.3.3.3.2. Increase the number of red and green checks

Release 2007a+ 388/546
Revision 4.2 vA



y Q{ HMOLOGIES
Previous Back to table of contents Next

9.3.3.3.1. Reduce the cloud of points

Stubs do not need to model the details of the functions or proceduresinvolved. They only need to represent the effect that the code might have on the
remainder of the system.

If afunction is supposed to return an integer, the default automatic stubbing will stub it on the assumption that it can potentially take any value from the
full type of an integer.

Given that Verifier models data ranges throughout the code it analyses, it will obviously produce more precise, informative results, - provided that the
datait considers from the “outside world” is representative of the data that can be expected when the code is implemented. There is a certain number of
mechanisms available to model such a data range within the code itself, and three possible approaches are presented here. Thereis no particular
advantage in using one approach or another (except, perhaps, that the assertionsin the first two will usually generate orange checks) —it islargely down
to personal preference.

\with volatile and assert with assert and without volatile without assert, without volatile, without " if"
#i ncl ude <assert. h> 4i ncl ude <assert . h>
:[nt stub(void) extern int other_func(void); extern int other_func(void);
. . i nt stub(void) i nt stub(void)
vol atile int random i [
Inttnp; int tnp; int tnp;
tmp = random t np= ot her _func(); do {tnp= other _func();}
assert(tnp>=1 && tnp<=10); assert (tnp>=1 && t np<=10); while (tnp<il || tnp>10);
return tnp; return tnp; return tnp;
i } )
Release 2007a+ 389/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.3.3.3.2. Increase the number of red and green checks

This example shows a header for a missing function (which might occur, for example, if the code is an incomplete
subset of a project). The missing function copies the value of the ‘src’ parameter to ‘dest’ and so there would be a
division by zero (RTE) at run time.

int a,b;

Int *ptr;

void a_m ssing_function(int *dest, int src);
/* should copy src into dest */

voi d mai n(voi d)

{
a = 1,
b = 0;
a_mssing function(&a, b);
b =1/ g
}
* By relying on PolySpace' s default stub, the division is shown with an warning because

‘a isassumed to be anywhere in the full permissible integer range (including 0)
* If the function was commented out, then the division would be green.
 Avreddivision could only be achieved with a manual stub.

Applying fine-level modelling of constraints in primitives and outside functions at the application periphery will
propagate more precision throughout the application, which will result in a higher selectivity rate (more proven
colours, i.e. morered + green + )

Release 2007a+ 390/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.3.3.4. Describe multitasking behaviour properly

The proper description of the asynchronous characteristics of the application (implicit task declarations,
mutual exclusion, critical sections) is necessary if the best results are to be achieved with PolySpace
Verifier.

Consider two tasks T1 and T2 and a shared variable X set to O at initialisation phase:
T1 sets X to 12

T2 divides by X

Because the task T1 can be started before or after T2, the division is . Modelling the task
differently could turn this orange check green or red.

You can refer to the “Multitasking section” for a complete description of tasking facilities. These include

Shared variable protection:

Critical sections,

Mutual exclusion,

Access pattern,

Tasks synchronisation,

Rendez-vous (for Ada only),
Tasklng

Threads, interruptions,

Synchronous/asynchronous events,

Real-time OS.

Release 2007a+ 391/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

9.3.3.5. Tune the advanced parameters

The Advanced Parameters provide a degree of control over some aspects of PolySpace' sinternal tuning. These
are provided to allow the user to concentrate analysis time on specific aspects of the software. For example, the
user can decide whether or not to expand arrays and records by modelling each element as a separate variable.

Theses options are specific to each language. Refer to “PRECISON LEVEL”.

- (0-3)
- modul es- preci sion nmodl: (0-3)[, mod2: O(0-3)[,...]]

Release 2007a+ 392/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.4. How to conclude an orange review

Related subjects:
9.3.4.1. What is an orange?

9.3.4.2. What are the different sour ces of oranges?
9.3.4.3. How to deter mine the cause of one orange?

Release 2007a+ 393/546
Revision 4.2 vA



PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

9.3.4.1. What is an orange?

If acheck isorange, it means that the approximate data set assumed by the analysis to represent a variable intersects with the error zone.

Hon empty intersection means Operation: 1 {x-7)

kg

Graphical representation of an check

Behind this picture, the orange colour can reveal any of the situations below.

Note that any an orange check can approximate a check of any other colour.

approximated by

Red approximated

by
ey
e
" Any other situation: Green approximated by
X real orange

If PolySpace attempted to manipulate every possible discrete value for al variables, the overheads for the analysis would be so large that
the problem would become incomputable. PolySpace manipulates polyhedrons representing data sets, and therefore cannot distinguish the
category of an orange. That task is left to you, and is detailed in the following chapters.

(As a conseguence, sometimes you may find an which represents something which seems an obvious bug, and at other
times you may find such a which is obviously safe. Asfar as the mechanism within PolySpace is concerned, it simply represents the
intersection of two data sets— which iswhy you are left to perform the results review to draw these distinctions. )

Release 2007a+ 394/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.3.4.2. What are the different sources of oranges?

There are anumber of possible causes of to be considered.
1. Potential bug: an can represent areal bug.

Example—Iloop with division by zero

2. Inconclusive check: an can represent a situation where PolySpace is unable to
conclude whether a problem exists. It is sometimes in the nature of software code that it cannot be
concluded whether there is a potential error. In the example below, the task T1 can be started before or
after T2, so PolySpace can’'t conclude without the calling sequence being defined.

 Consider avariable X initialised to 0, and two concurrent tasks T1 and T2.

e  Supposethat T1 assignsavalue of 12 to variable X

*  Now supposethat T2 divides alocal variable by X. The division is shown as an
because T1 can be started before or after T2 (so adivision by zero is possible).

3. Dataset issue: an resulting from atheoretical set of data. PolySpace considers all
combinations of input data rather than one particular combination (that is, it uses an upper approximation
of the data set). Therefore a check may be coloured asthe result of a combination of input values
which is analysed by PolySpace, but which will not be possible at execution time.

e  Consider three variables X, Y and Z which can vary between 1 and 1000

*  Now suppose that the code computes avalue of X*Y*Z on atype 16 bits. The result can
potentially overflow. It may be known when the code is devel oped that the variables can't all
take the value 1000 at the same time, but this information is not available to PolySpace. The
code will be coloured , accordingly.

4. Basic imprecision: an can be due to an imprecise approximation.

 Consider X, asigned integer between -2"31 and 2/31-1.

e Suppose afunction is called which performs the assignment x=1/x

*  The parameters passed to the function imply that x must be equal to -5, -3, 8 or [10..20]. It
is clear from inspection that there is no problem here, but in this case PolySpace has made an
Imprecise approximation.

Release 2007a+ 395/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.3.4.3. How to determine the cause of one orange?

Consider each of the four categoriesin turn. Bugs may be revealed by any category of

other than the “Basic imprecision” category.
1. Potential bug: An can reveal code which will fail under some circumstances. The
following section describes how to find them.

2. Inconclusive analysis: Most inconclusive will take some time to investigate. An
inconclusive may well result from a very complex situation such that it may take an hour
or more to understand the cause. Y ou may decide to recode in order to be certain that there is no risk,
bearing in mind the criticality of the function and the required speed of execution.

3. Datasetissue. It isnormally possible to conclude that an isthe result of data set
problem in a couple of minutes. Y ou may wish to comment the code to flag this warning, or alternatively
modify the code in order to take constraints into account.

4. Basicimprecision: PolySpace cannot help to debug this code. Y ou may or may not have a problem
here, but you will need a supplementary activity to be sure. Most of the time, aquick code review isa
suitable path to take, perhaps using the Viewer’ s navigation facilities.

Release 2007a+ 396/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5. Duration of Analysis

Related subjects:
9.3.5.1. How far hasthe analysis gone? How can | predict the analysisduration

9.3.5.2. Reducing analysistime

Release 2007a+ 397/546
Revision 4.2 vA



y pEC HMHOLOGIES
Previous Back to table of contents Next

9.3.5.1. How far has the analysis gone? How can | predict the analysis duration

The duration of an analysis is impacted by:

*  The size of the code

*  The number of global variables

*  The nesting depth of the variables (the more nested they are, the longer it takes)

e The depth of the call tree of the application

*  The “intrinsic complexity” of the code, particularly with regards to pointer manipulation

The fact that so many factors are involved make it impossible to derive a precise formula to calculate analysis duration.
Instead, PolySpace provides textual output to illustrate how much progress has been made (available under Linux, and under
Windows using Cygwin). This progress text is located in the “product_installation_dir”/tools/ and is called polyspace-stats.

Example
/ cygdrivel/ C/ Pol ySpace/ 2. 4/ Verifier/tool s/ pol yspace-stats ny_log file.txt

Icygdrivelc/PolySpace_Results

S oygdr 1ue£ﬂfPulyEpacef-’2 4f|.|31-1f1£:1-f‘tuulaz’puly,_-.par.:e—,_-.tat“ FolySpace_2_4 1 _21 °HN
ew_Projeci_ 8225 2804—11h5A. Ing

PolySpace Verifier 2_4 1 21 :

ostname H
Rezults dirvectory = AocygdrivescPolySpace_Results
Mumber of files ] 1
of lines H 2%
of lines without comments = 28

The completed passes are the following =
C zsources veprification : B:UH@:48
G to intermediate language translation = B:B88:16
IL compilation = #@:-86:28
Control and Data Flow Analysis B:88:87
Control and Data Flow Analysis B:88:81
Control and Data Flow Analysis B:88:82
Control and Data Flow Analysie 2

vrrently in Level 1 Software Safety fAnalysis :
4 ~atz files out of a total of 4 were analysed for this pass : B:@8:46

Please refer to file:f cygdrivesvs/Tolvepace_Results-FolySpace_2_4 1 21 MWew_Projec
t_H3_25 2084-11h5%8.1log for further information.

5

Consider the area displaying
“Currently in Level 1 Software Safety Analysis’

4 .atzfiles out of a total of 4 were analysed for this pass: 00:00:46

Release 2007a+ 398/546
Revision 4.2 vA



It can be deduced that
*  The proportion of files analysed for this integration level (4/4)
*  The elapsed time : 46 seconds

The remaining analysis duration can be deduced by extrapolating from this data by considering the number of files and passes
still to be completed.

Release 2007a+ 399/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2. Reducing analysis time

Related subjects:
9.3.5.2.1. An ideal application size

9.3.5.2.2. Why should there be an optimum size?

9.3.5.2.3. Switch the anti-virus off

9.3.5.2.4. Tuning PolySpace parameters

9.3.5.2.5. By selecting a subset of code

9.3.5.2.6. A decision algorithm to speed up an analysis. Hints and trouble-shooting
9.3.5.2.7. What arethe benefits of these methods?

Release 2007a+ 400/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2.1. An ideal application size

There always is a compromise between the time and resources required to analyse an application, and
the resulting selectivity. The larger the project size, the broader the approximations made by
PolySpace. These approximations enable PolySpace to extend the range of project sizes it can
manage, to perform the analysis further and to solve traditionally incomputable problems. However,
they also mean that the benefits derived from analysing the whole of a large application have to be
balanced against the loss of precision which results.

This is why it is recommended to begin with file by file analyses (when dealing with C

language), package by package analyses (when dealing with Ada language) and class by class
analyses (when dealing with C++ language). The maximum application size is between twenty (for C
++) and fifty thousand lines of code (for C and Ada). For such applications, approximations should not
be too significant. Take care that some times analysis time should not be reasonable.

Experience suggests that subdividing an application prior to analysis will normally have a beneficial
impact on selectivity — that is, more red, green and grey checks, fewer orange unproven and
therefore more efficient bug detection.

. A
%o of cranges

Oranges due to complexity

Oranges due to
missing parts of the
. software

S1ze (lines of code)

Best usage.
Between 20 and 50K lines

A compromise between selectivity and size

Release 2007a+ 401/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2.2. Why should there be an optimum size?

PolySpace has been used to analyse numerous applications with greater than one hundred thousand
lines of code. However, as project sizes become very large PolySpace Verifier

. Makes broader approximations, producing more oranges
. Can take much more time to analyse the application.

PolySpace is most effective when it is used as early as possible in the development process, i.e.
BEFORE any other form of testing.

When a small module (file, piece of code, package, whatever) is analysed using PolySpace, the focus
should be on the red and checks. Orange unproven checks at this stage are of a very useful
interest, as most of them deal with robustness of the application. They will change to red, or
green as the project progresses and more and more modules are integrated.

During the integration process, there might be a point where the code becomes so large (maybe 50000
lines of code or more) that the analysis of the whole project is not achievable within a reasonable
amount of time. Then there are two options.

. Stop the use of PolySpace at this stage (a lot of the benefits have been achieved already), or

. Analyse subsets of the code.

Release 2007a+ 402/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2.3. Switch the anti-virus off

Disabling or switching off any third party anti-virus software for the duration of an analysis can reduce the
analysis time by up to forty percent

Release 2007a+ 403/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.3.5.2.4. Tuning PolySpace parameters

There is a compromise to be made to balance the time required to perform an analysis, and the time required to
review the results. Launching PolySpace with the following options will allow the time taken for analysis to be
reduced but will compromise the precision of the results which will therefore take longer to review. It is
suggested that the parameters should be used in the sequence shown — that is, if the first suggestion does not
increase the speed of analysis sufficiently then introduce the second, and so on.

e  Switch from - Q2 to a lower precision;
e Setthe-respect-types-in-globalsand-respect-types-in-fields options;

. Setthe - k-1 i m t i ng option to 2, then 1, or 0;

*  Manually stub missing functions which write into their arguments.
* Ifsome big arrays are used, set the —no-fold option.

For example, appropriate launching commands might be

pol yspace-c -Q0 -respect-types-in-globals -k-limting O
or

pol yspace-c -quick

Release 2007a+ 404/546
Revision 4.2 vA



PonSpace

Previous

Back to table of contents

TECHNOLOGIES

9.3.5.2.5. By selecting a subset of code

If a project is subdivided for analysis purposes, then the total analysis time will be considerably shorter for the
sum of the parts than for the whole project considered in one pass. (See also: absolute address , volatile, default

stubbing). A logical way to set about splitting the project in this way is to consider data flow.

In such an application, there are two distinct concepts to consider:

*  Function entry-points. These refer to the PolySpace execution model and are started
concurrently, without any assumption regarding sequence or priority. They represent the beginning

of the call tree;

e Data entry-points. Lines in the code where data is acquired can be regarded as "data entry

points".

Consider the examples below.

Example 1
int conplete_treatnment_based on_x(int

{

t housand of

}

| i ne of conputation...

Example 2
voi d mai n(voi d)
{ .
int x;
X = read_sensor();
y
}

Example 3
#define REA STER 1 (*(int *)0x2002002)
voi d mai n(voi d)

{

X

y
}

In each case, the "x

REG STER _1;

nyn

conpl ete_treatment _based _on_x(Xx);

conpl ete_treat nent _based_on_x(Xx);

I nput)

nen

variable is a data entry point and "y" is dependent on that data an entry point. "y" may be

formatted data, perhaps due to a very complex manlpulatlon of x.

Since x is volatile, a probable consequence will be that y will contain all possible formatted data. An

Release 2007a+
Revision 4.2 vA

405/546



approximation could be to remove the procedure complete treatment based on x completely, and let automatic

ne,n

stubbing work. "y" will then be considered as potentially taking any value in the full range data (see default
stubbing)

/I renoved definition of conplete treatnent_ based on_x
voi d mai n(voi d)

{

X = [l what ever

y = conplete treatnent based on x(x); // now stubbed!
}
Some consequences

(-) Some loss of precision on y. Verifier will now consider all possible values for y, including those specified for
the first analysis;

(+) A huge investigation of the code is not necessary to isolate a meaningful subset. Any application can be split
logically in this way;

(+) No functional modules are lost;
(+) The results will still be correct because there is no need to remove any thread affecting change shared data;
(+) The complexity of the code is considerably reduced;

(+) A high precision level (02, say) can be maintained.

Typical examples of removable components, considering data flow:

»  Error management modules. These modules often contain a big array of structures that are
accessed through an API, but return only a Boolean value. By removing the code of the API and
retaining the prototype, the automatically generated stub will be assumed to return a value in the
range [-231, 2”*31-1], which includes 1 and 0. The procedure will be considered to return all
possible answers which models reality precisely.

*  Buffer management for mailboxes coming from missing code. Suppose an application reads
a huge buffer of 1024 char and then uses it to populate 3 small arrays of data using a very
complicated algorithm before passing it to the main module. If the buffer is excluded from the
analysis and the arrays are initialised with random values instead, then the analysis of the remaining
code will be just the same.

Related subjects:
9.3.5.2.5.1. Subdivision in accordance with dataflow

9.3.5.2.5.2. Subdivide according to real-time characteristics
9.3.5.2.5.3. Subdivide according to files

Release 2007a+ 406/546
Revision 4.2 vA



PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

9.3.5.2.5.1. Subdivision in accordance with dataflow

Consider the following example.

Meodule A reads variables varl, var2, var3
And produces variables vard, var3, var6

varl g Module A containing | 4 vard g Module B containing

more than one fimction. maore than one function.
i = Al e = Bl
Vars ol % —— VAl
F _-3;__' -~ EE
= A3 *» B3
1i.'-3.1'3 S - T-Eli'ﬁ -

In this application, variables 1, 2 and 3 can vary between the following ranges

Varl Between 0 and 10
\Var2 Between 1 and 100
Var3 Between -10 and 10

Specification of Module A:

Module A consists of an algorithm which interpolates between varl and var2. That algorithm uses var3 as an exponential
factor, so when varl is equal to O, the result in var4 isalso equal to O.

Asaresult, var4, var5 and var6 are produced with the following specifications:

Ranges vard Between -60 and 110
varb Between 0 and 12
varé Between 0 and 100
Properties And a set of properties 1. If var2isequa to 0, than vard>var5>5.
between variables 2. If var3isgreater than 4, than vard<var5<12
3 ..

Subdivision in accordance with data flow allows modules A and B to be analysed separately.
A will usevariables 1, 2 and 3 initialised respectively to [0;10], [1;100] and [+10;10]

B will usevariables 4, 5 and 6 initialised respectively to [-60;110], [0;12] and [+10;10]

The conseguences

Release 2007a+ 407/546
Revision 4.2 vA



(-) A dlight loss of precision on the B module analysis, because now all combinations for variables 4, 5 and 6 are
considered:

e Itincludesall of the possible combinations.

» It alsoincludesthose that would have been restricted by the A module analysis.
For instance. If the B module included the test
“If var2 isequal to 0, than var4>var5>5"
then the dead code on any subsequent “else” clause would not be detected.

(+) Anin depth investigation of the code is not necessary to isolate a meaningful subset. It means that alogical splitis
possible for any application, in accordance with the logic of the data

(+) Theresults remain valid (because there no need to remove (say) athread that will change shared data)
(+) The complexity of the code is reduced by a significant factor
(+) The maximum precision level can be retained.

Typical examples of removable components;

»  Error management modules. A function has an_error_already occurred might return TRUE or
FALSE. Such amodule may contain abig array of structures which are accessed through an API. The
removal of the API code with the retention of the prototype will result in the Verifier analysis producing a
stub which returns [-2731, 2*31-1]. Thisclearly includes 1 and O (yes and no). The procedure

has an_error_already occurred will therefore return all possible answers, just like the code would at
execution time.

»  Buffer management for mailboxes coming from missing code. Suppose alarge buffer of 1024 char is
read, and the datais then collated into 3 small arrays of data using a very complicated algorithm. This data
is then given to amain module for treatment. For the Verifier analysis, the buffer can be removed and the 3
arrays initialised with random values.

* Display modules.

Release 2007a+ 408/546
Revision 4.2 vA



y E{ HHOLOGIES
Previous Back to table of contents Next

9.3.5.2.5.2. Subdivide according to real-time characteristics

Another way of splitting an application is to isolate files which contain only a subset of tasks, and to analyse each
subset separately.

If an analysisisinitiated using only afew tasks, PolySpace Verifier will lose information regarding the
interaction between variables.

Suppose an application involvestasks T1 and T2, and variable x.

If T1 modifiesx and T2 is scheduled to read it at a particular moment, subsequent operations in T2 will be
impacted by the values of x.

As an example, consider that T1 can write either 10 or 12 into x and that T2 can both write 15 into x and read the
value of x. There are two ways to achieve a sound stand-alone analysis of T2.

»  xcould be declared as volatile in order to take into account all possible executions. Otherwise x
will take only itsinitial value or x variable will remain constant, and T2's analysis will be a subset
of possible execution paths. Y ou might have precise results, but it will only include one scenario
among all possible states for the variable x.

*  xcould beinitialised to the whole possible range [10;15], and then the T2’ entry-point called.
Thisisaccurate if x is calibration data

Release 2007a+

409/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2.5.3. Subdivide according to files
Simply extract a subset of files and perform an analysis either
e using entry-points, or

e by creating a“main” that calls randomly all functions that are not called by any other within this subset
of code.

This method may look too simple to be efficient but it can produce good results when theaim isto find red errors
and bugsin code.

Release 2007a+ 410/546
Revision 4.2 vA



PonSpace

Previous

TECHNOLOGIES
Back to table of contents

Next

9.3.5.2.6. A decision algorithm to speed up an analysis: Hints and trouble-shooting

This chapter suggests methods to reduce the duration of a particular analysis, while minimising the need to compromise the launch

parameters or the precision of the resuilts.

The size of a code sample which can be effectively analysed can be increased by tuning the tool be optimised for that sample. Beyond that
point, subdividing the code or choosing a lower precision level will bring better results (-O1, -0O0).

Suppose that for a given set of code, the intermediate language translation doesn’t finish.

Step 1: standard scaling options

o CPU must be = | GHz, RAM must be > 1 ,r*'ff-’; q_-"“'“-—-._____
Gb T Hardware configuration
: i *mr—__ OK?

o Bwap files must be < 450 Mb, Swap must — .
be > 2 x RAM TR =

having a slow analysis can be normal.

o Try option -guick.

[u]

Think about splitting the

- - = -
e application size is over
e —— :
¥ e S S0K lines?
-

. i
_\-"-\-\___ e

e ; e

Set options

-respect-types-in-globals

-respect-types-in-fields

refer to next page: step 2 - Alias
complexity

i —
" T
i ""_-'-FF-F'- -
ey blocked in 02, O1, 007
R
'\-\_\___\_ -\-\--\-\- -‘-'__'_'__:-"'--H-
S _:--"'"_FH--
T T
_'_'_'__,_:-' -\-""-\—\._\_
-'_‘__,_F'--'-‘- "-\_\__\_\_
.:-"'-'--FH-
-
T still blocked?
e,
i
-— _\_\-_\-\_ -'-F_‘_'__,.:-"_F'-
-"‘-\-\_\___\_\_\--__'__'_,_:-'-"'-

Step 2: alias complexity

Release 2007a+
Revision 4.2 vA

411/546



Status : (See step 1)

blocked in the desired precisi
8l CDPLiOns —-respect-types—.. Are s
- "-.._\_\_\_\-_-
e -\-\-\-\-\'"-\_\_\_\_\_
Are all figures —
T . e
. available? (1} L VES
-\-\_\_\_\__- -____.--
-\-\_\_\_\___-\_\- r
Stub all function to “pure"” l
sfub varargs functions to pure (“delete” this e »EE__
4 [|function calls using "#define DbgPrint (args R e
)" or stub it. ‘_u;,.::---"'" Are varargs and "--_::_
~—__stubs pure? o
-\-\""-\._\_\_\_q—-\- e L
..lf?‘-‘
- 4 -\--\-\-""-.
< ____.-"'- -"‘-\-\____

Lauvnch again with “expc:r?t. : : _— PGCPTS 5 (gaa '“““*-._______b
PST_CLONE_LEWVEL=0" in launching . ~—___  analysis complete)?
a1ld. -""\-\_._\___ _____.--"'

conunand e s
Les
All figures are available (next page).

Intermediate language translation
has completed.

(1) A typical set of statisticsis shown below. They are be found for any application by using the “pol yspace- st at s
at any point after the intermediate language trans ation has been completed.

Sone stats on aliases use:

Nurmber of alias wites: 2672
Nurmber of nust-alias wites: 0
Nunber of alias reads: 0
Nunber of invisibles: 60

Nunber of gl obal invisibles: 3808
Stats about alias wites:
bi ggest sets of alias wites: Variable_ 1 (45), Variable_1 (32)
procedures that wite the biggest sets of aliases: procedure_f_1 (583),
procedure_f_2 (369), procedure_f_3 (264)

You can reduce the pointers conplexity by inlining the follow ng functions :

procedure g 1 procedure_g 2
procedure_g 3

From this point, there are three possible routes to take. In order of preference, they are
*  Reduce procedure complexity
*  Reduce task complexity

e Reduce variable complexity

and then restart the analysis.

Release 2007a+
Revision 4.2 vA

—v” command,

412/546



Reduce procedur e complexity

Reduce procedure complexity
The uwser can use the mline option applies to some fenction. Which function should the user add in the —
inline eption?

v

v

seguence for procedure g #

sequence for procedure f =

- another procedure

-_____-""' -\--H""\-
i %
-'"-- -H-H-H-
.-~"'H e
_—"-F- . - -
i write in its parameters
'\-\._\__H-\--H-
1o R“‘m%_ o =
-\--\""'\-\.._ e
H_L__H ___i_,--"'-
s —I—‘i s
————______ is < 20 lines of C code  _
k4 _ __i___
e — Ves
o———____ has no embedded loop
] S —
-"----
L passes its pointer
arameters (*) to
L S~ P *)

a-‘---'-'- -\--\-\-\"\-
- -
" are the procedure f # i
b % 2 T
- _{:"" alzo in the “g™ list
e “'“mﬂ_h_% (procedure_g_#)? e
-__\____h. -______-'
e o
-\-\-\-\'\-\_\_\_\-\- -__.:—"--FP-
g
_— |oo
ves

Ves

the procedure must NOT be inlined

add the procedure in the —inline list :

F3

-inline “test procedure g 12 other procedure”™

(*) for instance, doesit passits pointer parametersto another procedure?

YES NO NO
\void f(int *p) void f(int g) void f(int *r)
{ {
f2(p) *r=12
} }

Reduce task complexity

If 2 or moretasks are present, and particularly if there are more than 10000 alias reads:

Release 2007a+
Revision 4.2 vA

413/546



Set the -lightweight-thread-model option, which will
« Reduce task complexity, and
. Reduce analysistime

There are some down sides:

. It causes more oranges and a slight loss of precision on reads of shared variables through pointers

. Thedictionary may omit some read/write accesses.

Reduce variable complexity

If the types are complex Set the -k-limiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain precision

If there are large arrays Setting the -no-fold option can solve the problem.

Release 2007a+

414/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

90.3.5.2.7. What are the benefits of these methods?

It may be desirable to split the code
. To reduce the analysis time for a particular precision mode

e  Toreduce the number of oranges (see next two sections for details)

The problems subdivision may bring are that

*  Orange checks can result from a lack of information regarding the relationship between
modules, tasks or variables

e Orange checks can result from using too wide a range of values for stubbed functions

Related subjects:
9.3.5.2.7.1. When the application isincomplete

9.3.5.2.7.2. Considering the effects of application code size

Release 2007a+ 415/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.3.5.2.7.1. When the application isincomplete

When the code consists of a small subset of alarger project, alot of procedures will be automatically stubbed.
Thisis done according to the specification or prototype of the missing functions, and therefore PolySpace
assumes that all possible values for the parameter type can be returned.

Consider two 32 bit integers “a’ and “b”, which are initialised with their full range due to missing functions.
Here, @ b would cause an overflow, because “a’ and “b” can be equal to 2*31. The number of incidences of these
“data set issue’ can be reduced by precise stubbing.

Now consider a procedure f which modifiesitsinput parameters“a’ and “b”, both of which are passed by
reference. Suppose that “a’ might be modified to any value between 0 and 10, and “b” to any value between -10
and 10. In an automatically stubbed function, the combination a=10 and b=10 is possible even though it might not
be possible with the real function. This can introduce orange checks in a code snippet such as 1/(a*b - 100),
where the division would be

* S0 - even where precise stubbing is used, analysing a small piece of application might
introduce extra orange checks. However, the net effect from reducing the complexity will be to
reduce the total number of orange checks.

*  When using the default stubbing, the increase in the number of orange checks as the result of
this phenomenon tends to be more pronounced.

Release 2007a+ 416/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.3.5.2.7.2. Considering the effects of application code size

PolySpace Verifier can make approximations when computing the possible values of the variables, at any point in
the program. Such an approximation will always use a superset of the actual possible values.

For instance, in arelatively small application, PolySpace Verifier might retain very detailed information about the
data at a particular point in the code, so that for example the variable VAR can takethevalues{ -2; 1; 2; 10;
15;16;17;25}. If VAR isused to divide, the division is green (because O is not a possible value).

If the program being analyzed islarge, PolySpace Verifier would simplify the internal data representation by
using aless precise approximation, such as[-2; 2] U {10} U [15; 17] U {25} . Here, the same division appears
as an orange check.

If the complexity of the internal data becomes even greater later in the analysis, PolySpace Verifier might further
simplify the VAR rangeto (say) [-2 ; 20].

This phenomenon leads to the increase or the number of orange warnings when the size of the program becomes
large.

Note that the amount of simplification applied to the data representations al so depends on the required precision
level (OO0, O2), PolySpace Verifier will adjust the level of simplification, viz.:

e -00 and —quick: shorter computation time,
e -02: less orange warnings.

e -03: less orange warnings and bigger computation time.

Release 2007a+ 417/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.4. Applying coding rules to reduce oranges

Related subjects:
9.4.1. M1 SRA rules which PolySpace can help to follow

9.4.2. Recommended set of coding rules
9.4.3. Approximations made by PolySpace

Release 2007a+ 418/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
9.4.1. MISRA rules which PolySpace can help to follow
Rule # Adv/req [Description
21.1 required |provision should be made for appropriate run-time checking
9.1 required |All automatic variables shall have been assigned a value before being used.
128 required The right hand operand of a shift operator shall lie between zero and one less
' . than the width in bits of the left hand operand.
1211 advisory [Evaluation of constant unsigned integer expressions should not lead to wrap-
around.
. The number of arguments passed to a function shall match the number of
16.6 required
parameters.
: A cast should not be performed between a pointer type and an integral type (the
11.3 advisory .
null pointer shall not be de-referenced).

Release 2007a+
Revision 4.2 vA

419/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.4.2. Recommended set of coding rules
It is recommended that a subset of MISRA rules should be applied.

In addition, some constructions are known to produce a disproportionate number of orange checks. It will help to
improve selectivity if these constructions are avoided at the design stage.

Related subjects:
9.4.2.1. Set of coding rules having a direct impact on the selectivity

9.4.2.2. Set of coding ruleshaving an indirect impact on the selectivity

Release 2007a+ 420/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES
Back to table of contents Next

9.4.2.1. Set of coding rules having a direct impact on the selectivity

Following this set of coding rules will typically improve selectivity.

Rule # Description

[MISRA 8.7 declarations of objects should be at function scope unless awider scope is necessary

|M ISRA 8.10 all declaration at file scope should be static where possible

MISRA 8.12 \When an array is declared with external linkage, its size shall be stated explicitly or defined
implicitly by initialization.

|M ISRA 10.4 mixed precision arithmetic should use explicit casting to generate the desired results

|M ISRA 10.5 [Bitwise operations shall not be performed on signed integer types

|MISRA 11.2 Implicit conversions which may result in aloss of information shall not be used

|M ISRA 11.5 Type casting from any type to or from pointers shall not be used.

|M ISRA 12.12 The underlying bit representations of floating-point values shall not be used.

|MISRA 13.3 |Floating-point expressions shall not be tested for equality or inequality.

[MISRA 13.4 [Floating point variables shall not be used as loop counters.

MISRA 13.5 Only expressions concerned with loop control should appear within afor statement

|M ISRA 16.1 [Functions with variable numbers of arguments shall not be used.

[MISRA 16.2 [Functions shall not call themselves, either directly or indirectly.

[MISRA 16.7 const qualification should be used on function parameters which are passed by reference,
where it isintended that the function will not modify the parameter

[MISRA 17.5 The declaration of objects should contain no more than 2 levels of pointer indirection.

[MISRA 17.3 |[Relational operators shall not be applied to pointer types except where both operands are of
the same type and point to the same array, structure or union.

[MISRA 17.6 The address of an object with automatic storage shall not be assigned to an object that may
persist after the object has ceased to exist.

[MISRA 18.3 overlapping variable storage shall not be used

|M ISRA 18.4 [Unions shall not be used to access the sub-parts of larger data types

[MISRA 20.4 [Dynamic heap memory allocation shall not be used.

Note that MISRA rules 16.7, 17.3 and 18.3 are coding rules not checked.

Release 2007a+
Revision 4.2 vA

421/546




Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

9.4.2.2. Set of coding rules having an indirect impact on the selectivity

Following good practice in designing and writing “clean” software tends to imply less complexity, and hence
yields high selectivity from PolySpace analyses. The following rules are especially significant in this regard.

Rule # Description

[MISRA 5.1 Identifiers (internal and external) shall not rely on significance of more than 31 characters.
[Furthermore the compiler/linker shall be checked to ensure that 31 character significance
and case sensitivity are supported for external identifiers.

IMISRA 6.3 the basic types of char, int, short, long, float, and double should not be used, but specific-
length equivalent should be “typedef” for the specific compiler, and these type names used
in the code

[MISRA 9.2 [Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

MISRA 9.3 In an enumerator list, the ‘=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

MISRA 10.3 The value of acomplex expression of integer type may only be cast to atype that is
narrower and of the same signedness as the underlying type of the expression.

MISRA 11.1 Conversions shall not be performed between a pointer to a function and any type other than
the integral type (All the functions pointed to by a pointer to function shall be identical in
the number and type of parameters and the return type).

[MISRA 12.1 no dependence should be placed on C’' s operator precedence rulesin expressions.

[MISRA 12.2 The value of an expression shall be the same under any order of evaluation that the standard
permits.

IMISRA 12.4 The right hand operand of alogical && or || operator shall

not contain side effects

[MISRA 12.5 The operands of alogical && or || shall be primary-expressions.

|M ISRA 12.6 [Logica operators should not be confused with bitwise operators.

|MISRA 12.9 The unary minus operator shall not be applied to an unsigned expression.

[MISRA 12.10 The comma operator shall not be used.

[MISRA 13.1 A ssignment operators shall not be used in expressions which return Boolean values.

[MISRA 13.2 Tests of avalue against zero should be made explicit, unless the operand is effectively
[Boolean

MISRA 14.8 The statement forming the body of aif, elseif, else, while, do ... while or for statements
shall always be enclosed in braces

[MISRA 14.10 Allif ... elseif constructs should contain afinal else clause.

|MISRA 15.3 All switch statements shall contain afinal default clause

MISRA 13.6 Numeric variables being used within a“for” loop for iteration counting should not be

modified in the body of the loop.

Release 2007a+
Revision 4.2 vA

422/546



[MISRA 16.3 Identifiers shall either be given for all of the parametersin afunction prototype declaration,
or for none.
MISRA 16.8 |For functions with non-void return type:
i) there shall be one return statement for every exit branch (including
the end of the program),
i) each return shall have an expression
iii) The return expression shall match the declared return type.
[MISRA 16.9 [Functions called with no parameters should have empty parentheses
[MISRA 19.4 C macros shall only be used for symbolic constants, function-like macros, type qualifiers
and storage class specifiers.
[MISRA 19.9 Arguments to a function-like macro shall not contain tokens that 1ook like pre-processing
directives.
MISRA 19.10 In the definition of a function-like macro the whole definition, and each instance of a
parameter, shall be enclosed in parentheses.
[MISRA 19.11 Identifiers in pre-processor directives shall be defined before use.
[MISRA 19.12 There shall be at most one occurrence of the # or ## pre-processor operatorsin asingle
macro definition.
[MISRA 20.3 The validity of values passed to library functions shall be checked.

Note: MISRA rule 20.3 is coding rule not checked.

Release 2007a+ 423/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.4.3. Approximations made by PolySpace

Related subjects:
9.4.3.1. Volatile variables

9.4.3.2. Structureswith volatile fields
9.4.3.3. Absolute addr esses

9.4.3.4. Pointer comparison

9.4.3.5. L eft shift on negative variables
9.4.3.6. Some bitwise operators
9.4.3.7. Float loops

9.4.3.8. Shared variables

9.4.3.9. Array of function pointers
9.4.3.10. Trigonometric functions
9.4.3.11. Unions

9.4.3.12. L oop exit conditions
9.4.3.13. Constant pointer

Release 2007a+ 424/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.1. Volatilevariables

Volatile variables are potentially uninitialised and their content is always full range.
2 int volatile test (void)

3 {

4 vol atile int tnp;

5 return(tnp); [// NV orange: the variable content is full range[-
2731; 2731- 1]

6 }

In the case of a global variable the content would also be full range, but the NIV check would be green.

Release 2007a+

425/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.2. Structures with volatile fields

In this example, athough only the b field is declared as volatile, in practice any read accessto the “a” field will
be full range and

2 t ypedef struct {
3 int a;

4 volatile int b;
5 } Vol Struct;

Release 2007a+ 426/546

Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.4.3.3. Absolute addresses

Both reading from, and writing to, an absolute address leads to warning checks on the pointer dereference. An
absolute address is considered as a volatile variable.

Val = *((char *) OxOF00); // . access to an
absol ut e address

Release 2007a+ 427/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.4. Pointer comparison

PolySpace is a static tool analysing source code. Memory management concerns dynamic considerations, and the
characteristics of particular compilers and targets. PolySpace therefore doesn’t consider where objects are
actually implanted in memory

5 int *i, *j, k;
6 i = (int *) OxOFO0O;
7 j = (int *) OxOFFO;
8
9 if (1 <) [/l the condition can be true or false
10 k = 12; // this line is reachable
11 el se
12 k =23; // this line is reachable too.
It sthe same situation if “i” and “j” pointsto real variable
6 I = & one_vari abl e;
7 ] = & anot her _one;
9 if (1 <) I/ the condition can still be true or false

Release 2007a+ 428/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.5. Left shift on negative variables

Consider the example below.
*  When the option -allow-negative-operand-in- shift is not used, PolySpace gives ared error on
the SHF check because behaviour is compiler-dependant.

*  When the option -allow-negative-operand-in- shift isused, y is always full range even if the
signed value of x is known.

4 char x, v;
5 X = 0Ox8F;
6 =x << 3 ; /]
Release 2007a+ 429/546

Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

9.4.3.6. Some bitwise operators

PolySpace results are not equally precise with all bitwise operators - AND, OR, XOR, and NOT (resp. &, |, ™))

1 i nt random ui nt (void);

2

3 void test (void)

4 { unsigned int varl, var2, var3;

5 var 1=0; var 2=0;

6

7 [l precision with zero on values with AND bitw se operator
8 var 3= 0x01 & var Z;

9 if (randomuint()) assert(var3==0); /| ASRT Checked
10 var 3= 0x02 & OxF3;

11 i f (randomuint()) assert(var3==0x02); // ASRT checked

12 /1 Full range with other val ues

13 var3 = random uint();

14 var3 = var3 & 0x02;

15

16

17 [l Full range on values with OR bitw se operator

18 var 3=var 1| var 2;

19

20

21

22 /1 Full range on values with XOR bitw se operator

23 var 3=var 1*var 2;

24

25

26

27 [l precision wth zero val ues on NEGATI VE bitw se operator
28 var3 = ~varl

29 I f (randomuint()) assert(var3==0xFFFFFFFF); // ASRT checked
30 [l precision on values with NEGATI VE bitw se operator
31 var3 = ~0xAE;

32 i f (randomuint()) assert(var3==0xFFFFFF51); // ASRT
checked

33}

Release 2007a+
Revision 4.2 vA

430/546



Previous

PonSpace

TECHNOLOGIES

Back to table of contents

9.4.3.7. Float loops

Values on constructions are less precise when floats are used in loops.

M= © 0~
)

Release 2007a+
Revision 4.2 vA

int i;
double X = 0.0;
/'l less precision on float evaluation in | oops

for (I =0 ; I < 6; |++)
X = X + 10. 56; Il

/1 VOA says 10.561 >= EXPR >= 10.559 OR EXP >= 21.119

431/546



Previous

PonSpace

TECHHNOLOGIES
Back to table of contents Next

9.4.3.8. Shared variables

At the minimum, a shared variable contains a union of all rangesit can contain among the application. At the
maximum, the variable will be full range.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Release 2007a+
Revision 4.2 vA

voi d p_taskl(void)

{

}

begi n_cs();
X = 0;
if (X {
Y = X; [l Verified NIV, even it should be grey

}

end _cs();

voi d p_task2(void)

{

begi n_cs();
X = 12;
Y = X + 1; /1 Verifier considers [X==1] or [X==13]
if (Y == 13)

Y = 14;
el se

Y =X-1; [l Verified checks even it should be grey
end_cs();

432/546



Previous

PonSpace

TECHHNOLOGIES
Back to table of contents

9.4.3.9. Array of function pointers

In the following example, PolySpace results show an orange check despite the test for aNULL function pointer
test. However, it does accurately track the functions being called.

18

19
20
21
22
23
24
25
26
27
28
29
30
31

32

Release 2007a+
Revision 4.2 vA

ptr_func array_func[]
f1,
f2,
NULL,

b

voi d mai n(voi d)
{
i nt [
i = 0;
while (i < 3) {
i f (array_func[i]

= {

I = NULL)

array_func[i]();

| ++; }

433/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

9.4.3.10. Trigonometric functions

With all trigonometric functions such as cosines, sines etc., PolySpace always assumes that the return value is
bound between the limits of that function — irrespective of the parameter passed to it. Consider the following
example, which uses acos, sin and asin functions.

7 doubl e res;

8

9 res
10

11

12 res
13

14

15 res
16

sin(3.141592654) ;

asin(0.0);

acos(0.0);

Release 2007a+ 434/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

9.4.3.11. Unions

It is recognised nonetheless that there are situations in which the careful use of unions is desirable in
constructing an efficient implementation. Nevertheless, the kinds of implementation behaviour that
might relevant are:

. Padding: padding could be inserted at the end of an union.
. Alignment: members of any structures within union could have different alignments.

. Endianness: whether the most significant byte of a word could be stored at the lowest or highest
memory address.

. Bit-order: bits within bytes could have both different numbering and allocation to bit fields.

This why PolySpace can lose precision when structure unions are considered. Indeed this kind of
implementation is compiler dependant. Conversions from one type a union to another will cause a loss
of precision on two checks:

. Is the other field initialized?

. What is the content of the other field?
t ypedef union _u {

Int a;

char b[4]; } ny_union;

my_uni on X;

X.b[0] =1; X b[1] = 1; X b[2] = 1; X b[1] = 1;
if (X A == 0x1111)

else // both branches are reachabl e

Release 2007a+ 435/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.12. Loop exit conditions

PolySpace is more precise in loops where a test other than “does not equal” is used. Consider the loop index exit
valuesin the following examples.

The orange check in this example...

4 x = 0;

5 While (x !'= val ue)
6 {

7 -

8 X++:

9 }

is not evident here...

5 While (x <= val ue)
8 X++;
Release 2007a+ 436/546

Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

9.4.3.13. Constant pointer
To increase PolySpace precision where pointers are analysed, replace
const int *p = &y;
with
#define p (&)

Release 2007a+ 437/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10. Options description

Related subjects:
10.1. General

10.2. Target/Compiler

10.3. Compliance with standards

10.4. PolySpace inner settings

10.5. Precision/Scaling

10.6. Multitasking (For PolySpace Server only)
10.7. Batch mode options

10.8. Complete examples

Release 2007a+ 438/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.1. General

This section collates all options relating to the identification of the analysis, including the
destination directory for the results and sources.

Related subjects:
10.1.1. -prog Session identifier
10.1.2. -date Date
10.1.3. -author Author
10.1.4. -verif-version Version
10.1.5. -voa
10.1.6. -keep-all-files
10.1.7. -continue-with-red-error
10.1.8. -continue-with-existing-host
10.1.9. -allow-unsupported-linux
10.1.10. -results-dir Results Directory
10.1.11. -sources " files' or -sources-list-filefile name
10.1.12. -1 directory

Release 2007a+ 439/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.1.1. -prog Session identifier

This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.
Default:

Shell Script:polyspace

GUI:New_Project

Example shell script entry:
pol yspace-c -prog nmyApp ...

Release 2007a+ 440/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.1.2. -date Date

This option specifies a date stamp for the analysis in dd/mm/yyyy format.
This information
is labelled in the GUI as the Date. The GUI also allows alternative default
date formats, via the Edit/Preferences window.
Default:

Day of launching the analysis

Example shell script entry:
pol yspace-c -date "02/01/2002"...

Release 2007a+ 441/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.1.3. -author Author

This option is used to specify the name of the author of the
verification.
Default:

the name of the author is the result of the whoami command

Example shell script entry:
pol yspace-c -author "John Tester"

Release 2007a+

442/546
Revision 4.2 vA



PolyS pace

Previous Back to table of contents Next

10.1.4. -verif-version Version

Specifies the version identifier of the verification. This option can be used to
identify different analyses. This information is identified in the GUI as the
Version.
Default:

1.0.

Example shell script entry:
pol yspace-c -verif-version 1.3 ...

Release 2007a+ 443/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.1.5. -voa

When applied at launch time, this option enables the inspection of calculated
domains for simple type assignments (scalar or float).

A new category of checks - named VOA - is generated on " =" of some scalar
assignments to give the ranges. VOA checks are not available for volatile
variables.

Default:

Disabled by default

Note:

Depending on code optimisation, this check may not be present at all
assignment locations

Example Shell Script Entry:

pol yspace-c -voa ...

Release 2007a+ 444/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.1.6. -keep-all-files

When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart Verifier from the end of
any complete pass (provided the source code remains entirely unchanged). If
this option is not used, it is only possible to restart Verifier from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the Verifier.

Release 2007a+ 445/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.1.7. -continue-with-red-error

Note: This option may yield invalid results when used improperly.
Ordinarily, red errors (other than NTC) prevent Verifier from continuing to
the next integration pass. This option allows Verifier to continue even if one
of these red errors is encountered. In most cases, this will mean that the
dynamic behaviour of the code beyond the point where red errors are
identified will be undefined, unless the red code is actually inaccessible.
Default :

Verifier stops upon finding red errors.

Example shell script entry :
pol yspace-c -continue-with-red-error

Release 2007a+ 446/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.1.8. -continue-with-existing-host

When this option is set, the analysis will continue even if the system is under
specified or its configuration is not as preferred by PolySpace. Verified
system parameters include the amount of RAM, the amount of swap space,
and the ratio of RAM to swap.

Default:

Verifier stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:
pol yspace-c -conti nue-w t h-exi sting-host

Release 2007a+

447/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents

10.1.9. -allow-unsupported-linux

This option specifies that PolySpace will be launched on an unsupported OS Linux distribution.

In such case a warning is displayed in he log file against possible incorrect behaviours:

E R I b b b S b b S I R I I R IR R S b b b b S b S R SR R I b S S b I b b b I SRR e

* k% * k% %
* k% V\ARNING * k% %
* k% * k% %
* Kk You are runni ng Pol ySpace Verifier on an kR
kK unsupported Linux distribution. It may |ead * ok
* Kk to incorrect behaviour of the product. Pl ease kR
kK note that no support will be available for * ok
* Kk this operating system kR
* k% * k% %

E R I S b b b b S R I I R b b b b S b S S SRR I b S S b b b b b b S I R

Default:
Disable

Example Shell Script Entry:
pol yspace-c —al | ow unsupport ed-1i nux

Release 2007a+
Revision 4.2 vA

448/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.1.10. -results-dir Results Directory

This option specifies the directory in which Verifier will write the results of
the analysis. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration
file 1s to be copied using the "Save as" option.
Default:

Shell Script: The directory in which tool is launched.

From Graphical User Interface: C:\PolySpace Results

Example Shell Script Entry:
pol yspace-c -results-dir RESULTS ...
export RESULTS=results "date +%d%B %1HYV YA
pol yspace-c -results-dir “~pwd /$RESULTS ...

Release 2007a+ 449/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.1.11. -sources " files' or -sources-list-file file_ name

-sources "filel[ file2[ ...]]" (Linux and Sol ari s)

or

-sources "filel[,file2[, ...]]" (w ndows, Linux and Sol aris)
or

-sources-list-file file_name (not a graphical option)

List of source files to be analyzed, double-quoted and separated by commas. Note that UNIX standard
wild cards are available to specify a number of files.

Note:

The specified files must have valid extensions: *. (¢| C] cc| cpp| CPP| cxx| CXX)

Defaults:

sources/ *. (c| C cc| cpp| CPP| cxx| CXX)

Example Shell Script Entry under linux or solaris (files are separated with a white space):
pol yspace-c -sources "ny_directory/*. cpp"

pol yspace-c -sources "ny directory/filel.cc other _dir/file2.cpp"

Example Shell Script Entry under windows (files are separated with a comma):
pol yspace-c -sources "ny_directory/filel.cpp,other _dir/file2.cc"

Using - sour ces-list-fil e, each file name need to be given with an absolute path. Moreover, the
syntax of the file is the following:
- Onefile by line.
- Each file name is given with its absolute path.
Note:
This option is only available in batch mode.

Example Shell Script Entry for -sources-list-file:
pol yspace-c -sources-list-file "C \Analysis\files.txt"

pol yspace-c -sources-list-file "/home/poly/files.txt"

Release 2007a+ 450/546
Revision 4.2 vA



Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.1.12. -l directory

This option is used to specify the name of a directory to be included when
compiling C sources. Only one directory may be specified for each —I, but the
option can be used multiple times.

Default:

- When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

- If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-1" list

Example Shell Script Entry-1:

pol yspace-c -1 /coml/inc -1 /coml/sys/inc
1s equivalent to
pol yspace-c -1 /coml/inc -1 /coml/sys/inc -1 ./sources

Example Shell Script Entry-2:
pol yspace-c

is equivalent to
pol yspace-c -1 ./sources

451/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.2. Target/Compiler

This section allows details of the target processor and operating system to be specified. Header
files should not be entered here; instead, include directories should be added using the relevant
field under the Compile flag options.

Related subjects:
10.2.1. -target TargetProcessor Type

10.2.2. GENERIC ADVANCED TARGET OPTIONS

10.2.3. -OS-target OperatingSystemT ar getFor PolySpaceStubs
10.2.4. -D compiler-flag

10.2.5. -U compiler-flag

10.2.6. -include file nhame

10.2.7. -post-pr epr ocessing-command <file name> or " command"
10.2.8. -post-analysis-command <file hame> or " command"

Release 2007a+ 452/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.2.1. -target TargetProcessor Type

Release 2007a+
Revision 4.2 vA

This option specifies the target processor type, and by doing so informs
Verifier of the size of fundamental data types and of the endianess of the
target machine.
Possible values are:

sparc, m68k, powerpc, 1386, c-167, tms320c3x, sharc21x61, necv850,
mcpu, or generic target.
mcpu is a reconfigurable Micro Controller/Processor Unit target. One or more
generic target can also be specified and saved. Also code which is to be run
on an unlisted processor type can be analysed using one of the other processor
types listed, if the data properties which are relevant to Verifier are common.
Refer to the “target specific issues" section for more details.
Instructions on the specification of a generic target and on the modification of
the mcpu target are available at the GENERIC ADVANCED TARGET
SETTINGS link.

Default :
sparc

Example shell script entry :
pol yspace-c -target nb68k ...

453/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.2.2. GENERIC ADVANCED TARGET OPTIONS

The previous Generic target options dialog box is only available when a mcpu target is selected. (Enter
the target name in PolySpace Launcher)

Allows the specification of a generic "Micro Controller/Processor Unit" or mcpu target name. Initially, it
Is necessary to use the GUI to specify the name of a new mcpu target — say, “MyTarget”.

That new target is added to the -target options list. The new target’s default characteristics are as
follows, using the type [size, alignment] format.

 char[8, 8, char [16,16]]
short [8,8], short [16, 16]
* int[16, 16]
* long [32, 32], long long [32, 32]
» float [32, 32], double [32, 32], long double [32, 32]
e pointer [16, 16]
e charis signed
When using the command line, MyTarget is specified with all the options for modification:
pol yspace-c -target MyTar get
For example, a specific target uses 8 bit alignment (see also -align ), for which the command line would
read:

pol yspace-c -target nctpu -align 8

Related subjects:
10.2.2.1. -default-sign-of-char [signed|unsigned]
10.2.2.2. -char-is-16bits
10.2.2.3. -short-is-8bits
10.2.2.4. -int-is-32bits
10.2.2.5. -long-long-is-64bits
10.2.2.6. -double-is-64bits
10.2.2.7. -pointer -is-32bits
10.2.2.8. -align [8]|16]32]
10.2.2.9. -logical-signed-right-shift

Release 2007a+ 454/546
Revision 4.2 vA



Previous

PonSpace

TECHHNOLOGIES
Back to table of contents Next

10.2.2.1. -default-sign-of-char [signed|unsigned]

Release 2007a+
Revision 4.2 vA

This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target's default behaviour

- default mode: The sign of char is left to assume the target's default
behaviour. By default all targets are considered as signed except for hc08 and
powerpc targets.

- Signed:

Disregards the target's default char definition, and specifies that a "signed
char" should be used.

- unsigned:

Disregards the target's default char definition, and specifies that a "unsigned
char" should be used.

Example Shell Script Entry

pol yspace-c -default-sign-of-char unsigned -target ntpu ...

455/546



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.2.2.2. -char-is-16bits

This option is only available when a -mcpu generic target has been chosen.
The default configuration of a generic target defines a char as 16 bits. This option changes it to 16 bits,
irrespective of sign.
the minimum alignment of objects is also set to 16 bits and so, incompatible with the options -short-is-
8bits and -align 8.
Setting the char type to 16 bits has consequences on the following:

. computation of si zeof for objects

. detection of underflow and overflow on chars
Without the option char for mcpu are 8 bits

Example shell script entry:
polyspace-c -target mcpu -char-is-16bits

Release 2007a+ 456/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.2.2.3. -short-is-8bits

This option is only available when a mcpu generic target has been chosen.
The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

- computation of sizeof objects referencing short type

- detection of short underflow/overflow

Example shell script entry
pol yspace-c -target ntpu -short-is-8bits

Release 2007a+ 457/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.2.2.4. -int-is-32bits

This option is available with a mcpu generic target, hc08, hc12 and mpc5xx
target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int is
used as struct member or array component, is also set to 32 bits. See also -

align option.
Example shell script entry
pol yspace-c -target ntpu -int-is-32bits

Release 2007a+ 458/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.2.2.5. -long-long-is-64bits

This option is only available when a mcpu generic target has been chosen.
The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64 bits.
See also -align option.

Example shell script entry
pol yspace-c -target nctpu -long-long-is-64bits

Release 2007a+

459/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.2.2.6. -double-is-64bits

This option is available when either a mcpu generic target or a sharc21x61 target has been chosen.
The default configuration of a generic target defines a double as 32 bits. This option, changes both
double and long double to 64 bits. When a double or long double is used as a struct member or array
component, its alignment is set to 4 bytes.
See also -align option.
Defining the double type as a 64 bit double precision float impacts the following:
- Computation of sizeof objects referencing double type
- Detection of floating point underflow/overflow
Example
i nt mai n(voi d)
{
struct S {char x; double f;};
doubl e Xx;
unsi gned sl1, s2;

sl = sizeof (double);

s2 = sizeof(struct S);

X = 3.402823466E+38; /* |EEE 32 bits float point maxi num val ue */
X = X * 2:

return O;

}

Using the default configuration of sharc21x62, C Verifier assumes that a value of 1 is assigned to s1, 2
is assigned to s2, and there is a consequential float overflow in the multiplication x * 2. Using the —
double-is-64bits option, a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)
Example shell script entry

pol yspace-c -target ntpu -doubl e-is-64bits

Release 2007a+ 460/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.2.2.7. -pointer-is-32bits

This option is only available when a mcpu generic target has been chosen.
The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry
pol yspace-c -target ntpu -pointer-is-32bits

Release 2007a+ 461/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES
Back to table of contents Next

10.2.2.8. -align [8]|16|32]

Release 2007a+
Revision 4.2 vA

This option is available with a mcpu generic target and some other specific
targets (with hc08, hc12 or mpc5xx available values are 16 and 32). It 1s used
to set the largest alignment of all data objects to 4/2/1 byte(s), meaning a 32,
16 or 8 bit boundary respectively.
The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.
Example shell script entry with a 32 bits default aligment

pol yspace-c -target ncpu
-align 16.
If the -align 16 option is used, when objects with a size of more than 2 bytes
are used as struct members or array components, they are aligned at 2 bytes
boundaries.
Example shell script entry with a 16 bits specific aligment:

pol yspace-c -target ntpu -align 16
-align 8.
If the -align 8 option is used, when objects with a size of more than 1 byte are
used as struct members or array components, are aligned at 1 byte boundaries.
Consequently the storage assigned to the arrays and structures is strictly
determined by the size of the individual data objects without member and end
padding.
Example shell script entry with a 8 bits specific alignment:

pol yspace-c -target ntpu -align 8

462/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.2.2.9. -logical-signed-right-shift

In the Graphical User Interface, the user can choose between arithmetical and
logical computation.
- Arithmetic: the sign bit remains:

(-4)>>1=-2
(-7)>>1=-4
7>>1=3

- Logical: O replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646

(-7) >>1=(-7U) >> 1 = 2147483644

7>>1=3

Example shell script entry
When using the command line, arithmetic is the default computation mode. When
this option is set, logical computation will be performed.

pol yspace-c -1o0gical -si gned-right-shift

Release 2007a+ 463/546

Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES
Back to table of contents Next

10.2.3. -OS-target OperatingSystemT ar getFor PolySpaceStubs

Release 2007a+
Revision 4.2 vA

This option specifies the operating system target for PolySpace stubs.

Possible values are 'Solaris', 'Linux', 'VxWorks', 'Visual' and "no-predefined-
OS'. This information allows the appropriate system definitions to be used
during preprocessing in order to analyze the included files properly. -OS
target no-predefined-OS may be used in conjunction with -include or/and -D

to give all of the system preprocessor flags to be used at execution time.
Details of these may be found by executing the compiler for the project in
verbose mode. They are also listed in this document - search for keyword
"OS-target option"

Default
Solaris

Note

Only the 'Linux' include files are provided with PolySpace (see the include
folder in the installation directory). Projects developed for use with other
operating systems may be analysed by using the corresponding include files
for that OS. For instance, in order to analyse a VxWorks project it is
necessary to use the option -1 <<path to the VxWorks include folder>>

Example shell script entry

pol yspace-c -OS-target linux ...

pol yspace-c -OS-target no-predefined-0OS -D GCC MAJOR=2 -
i nclude /conplete path/inc/gn.h ...

464/546



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.2.4. -D compiler-flag

This option is used to define macro compiler flags to be used during
compilation phase.
Only one flag can be used with each —D as for compilers, but the option can

be used several times as shown in the example below.
Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:
pol yspace-c -D HAVE Mv¥LIB -D USE COML . ..

Release 2007a+ 465/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.2.5. -U compiler-flag

This option is used to undefine a macro compiler flags
As for compilers, only one flag can be used with each —U, but the option can

be used several times as shown in the example below.
Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:
pol yspace-c -U HAVE Mv¥LIB -U USE COML ...

Release 2007a+

466/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.2.6. -include file_name

This option is used to specify files to be included by each C file involved in
the analysis.

Default:

No file is universally included by default, but directives such as "#include
<include file.h>" are acted upon.

Example Shell Script Entry:

pol yspace-c -include pwd /sources/a file.h -include /inc/

inc file.h ...
pol yspace-c -include /the _conplete path/my_defines.h ...

Release 2007a+ 467/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.2.7. -post-pr epr ocessing-command <file_nhame> or " command"

When this option is used, the specified script file or command is run just after the pre-processing phase
on each source file. The script executes on each preprocessed c files. The command should be
designed to process the standard output from pre-processing and produce its results in accordance
with that standard output.

Note that we can have find each pre-processed file in the results directory in the zipped file ci . zi p
located in <r esul t s/ ALL/ SRC/ MACRCS. The extension of the preprocessed file is . ci .

It is important also keep the number of lines of the preprocessed file ci file. Adding a line or removing
one could have some unpredictable behavior on the location of checks and MACROS in the PolySpace
viewer.

Default:

No command.

Example Shell Script Entry — file name:

To remove the key word interrupt or @near, you can type the following command
pol yspace-c - post-preprocessi ng-comand ~pwd /renove_bad_keywords. sh

where r enove_bad_keywor ds. sh is the following script:
#!/ bin/sh
sed "s/ @ear//g" | sed "s/interrupt//g"
Example Shell Command Entry:
This example performs the same function as that illustrated above, but specifies the command line
directly:
pol ysypace- C - post-preprocessi ng-conmand "sed s/ @ear//g"

Release 2007a+ 468/546
Revision 4.2 vA


file:///E|/PolySpace/Documentation/HTML_C/key_words_to_automatically_ignore_or_replace__before_compilation.htm

y E{ HHOLOGIES
Previous Back to table of contents Next

10.2.8. -post-analysis-command <file_name> or " command"

When this option is used, the specified script file or command is executed once the analysis has
completed.

The script or command is executed in the results directory of the analysis.

Execution occurs after the last part of the analysis. The last part of is determined by the —to option.
Note that depending of the architecture used, notably when using remote launcher, the script can be

executed on the client side or the server side.

Default:
No command.

Example Shell Script Entry — file name:
This example shows how to send an email to tip the client side off that his analysis has been ended.
This example supposes that the mai | x command is available on the machine. So the command looks
like:
pol yspace-c -post-anal ysis-command pwd /end email . sh
where end_emai | s. sh is the following script:
#!'/ bi n/ sh
echo "analysis finished” | mailx —s ”Pol ySpace Anal ysis ended”
“nane@onni n. cont

Example Shell Command Entry:

This example performs the same function as that illustrated above, but specifies the command line
directly:

pol yspace-c -post-anal ysis-conmand "nmail x —s \” Pol ySpace Anal ysis ended\”
\ “nane@omai n. com """

Release 2007a+ 469/546
Revision 4.2 vA


mailto:name@domain.com
mailto:name@domain.com

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.3. Compliance with standards

Related subjects:
10.3.1. -dos

10.3.2. Embedded Assembler

10.3.3. Strictness during analysislaunching
10.3.4. Per missiveness during analysis launching
10.3.5. MISRA-C 2004 Rules

10.3.6. -dialect [iar|keil]

Release 2007a+ 470/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.1. -dos

This option must be used when the contents of the include or source directory comes from a DOS or
Windows file system. It deals with upper/lower case sensitivity and control characters issues.
Concerned files are:

* header files: all include dir specified (-1 option)

» source files: all sources files selected for the analysis (-sources option)
#include "..\n¥Y _TEst. h""M
#include "..\nmY_other_ FILE H'"M
into
#include "../nmy_test.h"
#include "../ny_other file.h"
Default:
disabled by default
Example Shell Script Entry:
polyspace-c -1 /usr/include -dos -1 ./ny copied include dir -D test=1

Release 2007a+ 471/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.2. Embedded Assembler

Related subjects:
10.3.2.1. -discard-asm

10.3.2.2. Pragmas asm

Release 2007a+ 472/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents

10.3.2.1. -discard-asm
This option instructs the PolySpace analysis to discard assembler code. If this option is used, the
assembler code should be modelled in c.
This option is not compatible with -asm-begin and -asm-end options.
Default:
Embedded assembler is treated as an error.
Example Shell Script Entry:
polyspace-c -discard-asm ...

Release 2007a+
Revision 4.2 vA

473/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.2.2. Pragmas asm
-asmbegin "markl[ mark2[...]]
and
-asmend "markl[mark2[...]]"

This option is used to allow compiler specific asm functions to be excluded from the analysis, with the
offending code block delimited by two #pr agma directives.

Consider the following example.

#pragma asm begin_1

int foo 1(void) { /* asmcode to be ignored by Pol ySpace */ }

#pragma asmend_1

#pragma asm begin_2

void foo 2(void) { /* asmcode to be ignored by Pol ySpace */ }

#pragma asm end_2

Where "asm begi n_1" and "asm begi n_2" marks the beginning of asmsections which will be
discarded and “asm end_1", respectively "asm end_2" mark the end of those sections.

Also refer to the -discard-asm option with regards to the following code:
asmint foo 1(void) { /* asmcode to be ignored by Pol ySpace */ }
asmvoid foo 2(void) { /* asmcode to be ignored by Pol ySpace */ }

Example Shell Script Entry:
pol yspace-c -di scard-asm -asmbegin "asm begin_1,asm begin_ 2" -asmend
"asm end 1, asm end 2"

Release 2007a+ 474/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.3. Strictness during analysis launching

Related subjects:
10.3.3.1. -strict

10.3.3.2. -Wall

Release 2007a+ 475/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.3.1. -strict

This option selects the Strict mode of PolySpace. It is equivalent to using the -Wall and -no-

automatic-stubbing options simultaneously.

This option is not compatible with -asm-begin and -asm-end options.

Release 2007a+ 476/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.3.3.2. -Wall

When this option is used, the C compliance phase will print all warnings. For example, with this option,

a warning will raise in the log file during compilation phase when trying to write into a const variable:
“war ni ng: assi gnnent of read-only nenber <var>"
Default:

By default, only warnings about compliance across different files are printed.
Example Shell Script Entry:

pol yspace-c -Wal |

Release 2007a+ 477/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.4. Permissiveness during analysis launching

Related subjects:
10.3.4.1. -permissive

10.3.4.2. -permissive-link

10.3.4.3. -allow-non-int-bitfield

10.3.4.4. -allow-undef-variables

10.3.4.5. -ignor e-constant-over flows
10.3.4.6. -allow-unnamed-fields

10.3.4.7. -allow-negative-oper and-in-shift

Release 2007a+ 478/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.4.1. -permissive

This option selects the PolySpace permissive mode, which is equivalent to the simultaneous use of -
allow-non-int-bitfield, -allow-undef-variables, -ignore-constant-overflows, -discard-asm, -permissive-
stubber, -continue-with-red-error, and -permissive-link.

Release 2007a+ 479/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.3.4.2. -permissive-link

Release 2007a+
Revision 4.2 vA

When this option is used, PolySpace accepts integral type conflicts between

declarations and definitions on arguments or/and returning functions.
It has an effect only

. when the size of a conflicting integral type is not greater than int, or

. conflicts occur between a pointer type and an integral type of same
size.

Default :

By default, PolySpace doesn’t accept any conflicts between declarations and
definitions.

480/546



y Q{ HHOLOGIES
Previous Back to table of contents

10.3.4.3. -allow-non-int-bitfield

This option allows the user to define types of bitfields other than those specified by ANSI C. The
standard accepts bitfields of signed and unsigned int types only.
Default:

Bitfields must be si gned or unsi gned i nt.
Example Shell Script Entry :
pol yspace-c -allownon-int-bitfield ...

Release 2007a+
Revision 4.2 vA

481/546



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.3.4.4. -allow-undef-variables

When this option is used, PolySpace will continue in case of linkage errors due to undefined
global variables. For instance when this option is used, PolySpace will tolerate a variable
always being declared as extern

Default:

Undefined variables causes PolySpace to stop.
Example Shell Script Entry:

pol yspace-c -al |l ow undef-variables ...

Release 2007a+ 482/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.4.5. -ignore-constant-overflows

This option specifies that the analysis should be permissive with regards to overflowing
computations on constants. Note that it deviates from the ANSI C standard.
For example,

char x = Oxff;

causes an overflow according to the standard, but if it is analysed using this option it becomes
effectively the same as

char x = -1;
With this second example, a red overflow will result irrespective of the use of the option.

char x = (rnd?0xFF:OxFE);

Default:
char x = Oxff: causes an overflow

Example Shell Script Entry:
pol yspace-c -ignore-constant-overflows ...

Release 2007a+ 483/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.3.4.6. -allow-unnamed-fields

When this option is used, PolySpace will continue in case of compilation errors due to un-named fields
in structures. For instance when this option is used, PolySpace will tolerate a structure where fields are

un-named since there are no duplicate names. With the option, the following source code is tolerate:
struct {

union { int x; int y;}
union {int z; int w}
}os;
S.X =2, s.z = 2
Default:
Un-named fields cause PolySpace to stop.
Example Shell Script Entry:
pol yspace-c -all ow unnaned-fields ...

Release 2007a+

484/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.4.7. -allow-negative-operand-in-shift
This option permits a shift operation on a negative number.

According to the ANSI C standard, such a shift operation on a negative number is illegal — for

example,
-2 <<2

With this option in use, PolySpace considers the operation to be valid. In the example, the
result would be
2<<2=-8

Default:
A shift operation on a negative number causes a red error.
Example Shell Script Entry:

pol yspace-c -all ow negati ve-operand-in-shift

Release 2007a+ 485/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.5. MISRA-C 2004 Rules

Related subjects:
10.3.5.1. -misra2 [all-rules| file name]

10.3.5.2. -includes-to-ignore" dir_or file pathl[,dir or file path?],...]]"

Release 2007a+ 486/546
Revision 4.2 vA



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.3.5.1. -misra2 [all-rules | file_name]

This option permits to check set of coding rules in conformity to MISRA-C:2004. All MISRA checks are
included in the log file of the analysis.
. Keyword al | - r ul es: It checks all available MISRA C rules. It implies the use of the default
configuration: any violation of MISRA C rules is considered as a war ni ng.
. Option fil enane: itis the name of an absolute ASCII file containing a list of MISRA rules to
check.
Format of the file:
<rul e nunber> of f|error|warning

# is considered as comments.

Example:

# M SRA configuration file for project C89

10.5 off # disable msra rule nunber 10.5

17.2 error # violation msra rule 17.2 as an error

17.3 warning # non-respect to msra rule 17.3 is a only a warning
Default:

disable

Example shell script entry:
pol yspace-c -msra2 all-rules ...
pol yspace-c -msra2 msra.txt

Release 2007a+ 487/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.3.5.2. -includes-to-ignore "dir_or_file_pathl[,dir_or_file_path2][,...]]"

This option prevents MISRA rules checking in a given list of files or directories (all files and
sub-directories under selected directory). This option is useful when non-MISRA C
conforming include headers are used. A warning is displayed if one of the parameter does not
exist.

This option 1s authorized only when -misra?2 1s used.

Example shell script entry :
pol yspace-c -misra2 msra.txt —includes-to-ignore "c:\usr\include"

Release 2007a+ 488/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.3.6. -dialect [iar|keil]

When this option is used, PolySpace will take into account some non ANSI syntax and semantic
associated to a chosen dialect between i ar and kei | . It refers to the well known compilers of the

company IAR (www.iar.com) and Keil (www.keil.com).

Using this option, PolySpace will tolerate some new structure types as keyword of the language such
sfr, shit, bit etc. Theses structures and associated semantic are part of compiler which have integrated
it to the ANSI C language as an extension.

Example of source code with keil dialect:
unsi gned char bdata Status[4];

sfr AU = OxFO;
shit OCnmd = Status[O0]"2;
sh2 =1, s”"6 = 0;
Example with iar dialect:
unsi gned char bdata Status[4];
sfr OCnd @ Ox4FFE;
OoCmd. 2 =1; s.6 = 0;
Example Shell Script Entry:
pol yspace-c —di al ect keil ...

—sfr-types <sfr_name>=<size_in_bits><sfr_namel>=<size_in_bits1>,...

Associated to the option -dialect, if the code uses specific sf r type keyword, it is mandatory to declare
using —sf r - t ypes option. It gives the name of the sf r type and its size in bits. The syntax is:
-sfr-types <sfr_nanme>=<size_in_bits>, ...

where <sf r _name> could be any name, but most of the time we encounter sfr, sfr16 and sfr 32 .
<si ze in bits>couldbe one of the values 8, 16 and 32.

Default:

No dialect used.

Example Shell Script Entry:
pol yspace-c —di al ect iar —sfr-types sfr=8,sfr32=32,sfrb=16 ...

Release 2007a+ 489/546
Revision 4.2 vA


http://www.iar.com/
http://www.keil.com/

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4. PolySpace inner settings

Related subjects:
10.4.1. MAIN GENERATOR OPTIONS (-main-generator) for PolySpace

10.4.2. Stubbing
10.4.3. Assumptions
10.4.4. Others

Release 2007a+ 490/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.4.1. MAIN GENERATOR OPTIONS (-main-generator) for PolySpace

This same option can be used for both PolySpace Client and Server, but the default behavior differs
between the two:
 Using PolySpace Server the user has the choice as to whether to activate the
option.
 Using PolySpace Client the option is activated by default.

Related subjects:
10.4.1.1. PolySpace Client default behaviour

10.4.1.2. PolySpace Server default behaviour

10.4.1.3. -main-generator (detailed options)

10.4.1.4. -main-gener ator-writes-variables| none| public | all | custom=v1,v2,.]
10.4.1.5. -function-called-before-main function name

10.4.1.6. -main-generator-calls[ none | unused | all | custom=f1{2,...]

Release 2007a+ 491/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.1.1. PolySpace Client default behaviour

There is no need to ascertain whether the code for analysis contains a "mai n" or not. That is

automatically checked by PolySpace Client:
. If a main exists in the set of file(s), then the analysis continues with this main
. Otherwise the tool generates a main with default options: - mai n- generator-wites-

vari abl es public and call all unused functions - mai n- generat or-cal | s unused.

Release 2007a+ 492/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.1.2. PolySpace Server default behaviour

By default, if no main found in a PolySpace Server analysis then it will stop. This behaviour can help
isolate files missing from the analysis.
It is also possible to allow PolySpace Server to ascertain whether a main is available.

. if amain is found, the analysis continues as normal.

. if not, the tool generates a main with assumption of analysing a library. Option used are - nai n-

generator-wites-vari abl es none and - nai n-generator-call s none.

Release 2007a+ 493/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.4.1.3. -main-gener ator (detailed options)

This option initiates the default behavior for PolySpace Verifier. The generated main has two distinct
purposes.

. It first initializes any variables identified in the first part of the option (-main-generator-writes-
variables)
. It then calls a function which could be considered as a initialize function (-function-called-before-
main)
. It then calls any functions identified in the second part of the option (-main-generator-calls) in a
“while (random)” loop.
Each option is described separately in the following.

Release 2007a+ 494/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.4.1.4. -main-generator-writes-variables[ none| public | all | custom=v1,v2,.]

Release 2007a+
Revision 4.2 vA

This option is used with the -main-generator option to dictate how the

generated main will initialize global variables..
Settings available:

- none: no global variable will be written by the main.

- public: every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

- all: every variable except const variables are assigned a “random”
value, representing the full range of possible values

- custom: only variables present in the list are assigned a “random”
value, representing the full range of possible values

Example

pol yspace-c -main-generator -main-generator-wites-variables
none

pol yspace-c -main-generator -main-generator-wites-variables
custonmevari abl e _a,variable b

495/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.1.5. -function-called-before-main function_name

It is possible to specify an initialization function that will be called on startup after the initialization of the
global variables and before the main loop when using the -main-generator option.
The squeleton of the generated main looks like:

1. Initialization of global variables

2. Call the specified function f nane

3. main loop with a call to all the specified function depending of option —main-generator-calls

Example shell script entry:
pol yspace-c -mai n-generator —function-call ed-before-main M/lnitFunction

Release 2007a+ 496/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.1.6. -main-generator-calls [ none | unused | all | custom=f1,f2,...]

The generated main will call functions according to this option. It is used with the -main-generator

option, to specify the functions to be called.
Possible values:

« none: no function is called. This can be used with a multitasking application
without a main (PolySpace Verifier only).

« unused (default): every function is called by the generated main unless it is called
elsewhere by the code under analysis.

o all: every function is called by the generated main except inlined.

« cCustom only functions present in the list are called from the main. Inlined

functions can be specified in the list.
Ani nl i ne (static or extern) function is not called by the generated main program with values al | or
unused. Ani nl i ne function can only be called with custom value: - mai n- generator-cal |l s
cust omeny_i nlined_func.
Example:
pol yspace-c -mai n-generator -nmain-generator-calls public
pol yspace-c -nmi n-generator -main-generator-calls custonefunction_1,
function_ 2

Release 2007a+ 497/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.2. Stubbing

Related subjects:
10.4.2.1. -data-range-specifications file name

10.4.2.2. -permissive-stubber
10.4.2.3. -no-automatic-stubbing

Release 2007a+ 498/546
Revision 4.2 vA



y Qz HNOLOGIES
Previous Back to table of contents Next

10.4.2.1. -data-range-specifications file_name

This option permits the setting of specific data ranges for a list of given global variables. This option is protected by a license.
File format:
The file fi | enane contains a list of global variables with the below format:

vari abl e_name val _mn val _nmax <init| permanent]| gl obal assert >
Variables scope:
Variables concern external linkage, const variables and not necessary a defined variable (i.e. could be extern with option -allow-
undef-variables).
Note:
Only one mode can be applied to a global variable.
No checks are added with this option except for gl obal assert mode.
Some warning can be displayed in log file concerning variables when format or type is not in the scope.
Default:
Disable.
Example shell script entry:

pol yspace-c -dat a-range-specifications range.txt

Release 2007a+ 499/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.4.2.2. -permissive-stubber

By default, the stubber rgjects functions:

- with complex function pointers as parameters

- with function pointers as return type

With this option, al functions are stubbed, at any cost (results may be wrong).

Release 2007a+

500/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.4.2.3. -no-automatic-stubbing

By default, PolySpace automatically stubs all functions. When this option is used, the list of
functions to be stubbed is displayed and the analysis is stopped.
Benefits:
This option may be used where
- The entire code is to be provided, which may be the case when analyzing a large
piece of code. When the analysis stops, it means the code is not complete.
- Manual stubbing is preferred to improve the selectivity and speed of the analysis.
Default:
All functions are stubbed automatically

Release 2007a+

501/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.3. Assumptions

Related subjects:
10.4.3.1. -div-round-down

10.4.3.2. -no-def-init-glob

10.4.3.3. -size-in-bytes

10.4.3.4. -allow-ptr-arith-on-struct
10.4.3.5. -ignor e-float-rounding
10.4.3.6. -detect-unsigned-over flows
10.4.3.7. -known-NT C procl][,proc?|,...]]

Release 2007a+ 502/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.3.1. -div-round-down

This option concerns the division and modulus of a negative number.
The ANSI standard stipulates that "if either operand of / or % is negative,
whether the result of the/ operator, isthe largest integer less or equal than
the algebraic quotient or the smallest integer greater or equal than the
quotient, is implementation defined, same for the sign of the % operator".
Note:
= (a/ b) * b+ a %b isalways true.
Default:
Without the option (default mode), if either operand of / or % is negative, the
result of the / operator is the smallest integer greater or equal than the
algebraic quotient. The result of the % operator is deduced froma % b = a
- (a/ b) *b
Example:
assert(-5/3 == -1 && -5%8 == -2); istrue.
With the -div-round-down option:
if either operand / or % is negative, the result of the / operator is the largest
integer less or equal than the algebraic quotient. The result of the % operator
1s deduced froma %b =a - (a/ b) * b .
Example:
assert(-5/3 == -2 && -5%8 == 1); istrue.
Example Shell Script Entry:
polyspace-c -div-round-down ...

Release 2007a+ 503/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.3.2. -no-def-init-glob

This option specifies that PolySpace should not take into account default
initialisations defined by ANSI C. When this option is not used, default
initialisations are

- 0 for integers

- 0 for characters

- 0.0 for floats

With the option in use, all global variable will be treated as non initialised -
and therefore cause a red error - if they are read before being written to.
Example Shell Script Entry :

pol yspace-c -no-def-init-glob ...

Release 2007a+ 504/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.4.3.3. -size-in-bytes

Release 2007a+
Revision 4.2 vA

This option allows incomplete or partial allocation of structures. This
allocation can be made by malloc or cast .

The example below shows an example using malloc. Further explanation can
be found in the section describing the partial and incomplete allocation of

structures. Also refer to the -allow-ptr-arith-on-struct section.
typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG
BIG *p = mal |l oc(sizeof (LI TTLE));

Default results

p->a =0 ; // red pointer out of its bounds
or p->b = 0 ; // red pointer out of its bounds
or p->c = 0 ; // red pointer out of its bounds

Results using this option
if (p!t= ((void *) 0) ) {

p->a = 0 ; // green pointer wthin bounds
or p->b = 0 ; // green pointer within bounds
or p->c = 0 ; // red pointer out of its bounds

}

505/546



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.4.3.4. -allow-ptr-arith-on-struct

Release 2007a+
Revision 4.2 vA

This option enables navigation within a structure or union from one field to
another, within the rules defined below. It automatically sets the -size-in-

bytes option.
Default
By default, when a pointer points to a variable then the size of the objected
pointed to is that of that variable - irrespective of whether it is contained
within a bigger object, like a structure. Therefore, going out of the scope of
this variable leads to a red IDP check (Illegal Dereference Pointer). This is
illustrated below.

struct S {char a; char b; int c;} x;

char *ptr = &x.Db;

ptr ++;

*ptr = 1; // red on the dereference, because the pointed
obj ect was "b"

Using this option

When this option is used in the above option, PolySpace considers that the
object pointed to i1s now the host object "x". The "ptr" pointer is in fact
pointing to &x, with the correct offset to the field “b” within the structure of
type S (inter-fields and end-padding included). Therefore, the dereference
becomes green

Consider a second example
struct S {
char a;
/* 3 bytes of padding between 'a', 'b'" */
int b;
int c;
char d[ 3];
unsi gned char e: 7;
char f;
/* 3 bytes of end padding */
X
char *ptr;
struct Nesting_S {
struct S s;

506/546



int c;
} z
ptr = (char *)&x.a; ptr++; *ptr = 10; // ptr points to the
paddi ng between a and b
ptr = (char *)&.b; ptr += 4; *ptr
first byte of c
ptr = (char *)&.d; ptr += 3; *ptr
e
ptr = (char *)&x.f: ptr++; *ptr = 10; // ptr points to the
first byte of end-paddi ng

all "*ptr = 10" access are green when the option is set, red otherwise.

10; // ptr points to the

10; // ptr points to the

Note:

For nested structures, for instance with ptr = (char *)&x.d.a, the dereference
of *ptr is green if ptr remains within x.d. However, even with this option in
use, a red check is generated if the pointer navigates above x.d.a. That is, if
this pointer is incremented or decremented such that it now to x.a, x.b, or x.c,
it causes a red IDP.

In the third example below, the *ptr access is red irrespective of whether the
option is set or not.
With the option set, the ptr pointer points to the structure+offset z.s, and ptr

can safely navigate within this structure z.s, but z.c is outside it.
ptr = (char *)z.s.f; ptr += 4; *ptr = 10; // ptr points to the
first byte of c:

Release 2007a+ 507/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.3.5. -ignore-float-rounding

Without this option, PolySpace rounds floats according to the IEEE 754 standard: simple precision on
32-bits targets and double precision on target which define double as 64-bits. With the option, exact
computation is performed.

With the option, exact computation is performed.

Example:

1

2 void ifr(float f)

3 {

4 doubl e = 1.27;

5 if ((double)l.27F == a) {

6

7 = 1.0F ;

8 /'l reached when -ignore-float-rounding is used or not
9 }

10 el se {

11

12 = 1. 0F ;

13 /'l reached when conpil ed when -ignore-float-rounding is not used
14 }

15 }

Using this option can lead to different results compared to the "real life" (compiler and target
dependent): Some paths will be reachable or not for PolySpace while they are not (or are) depending
of the compiler and target. So it can potentially give approximate results ( should be ).
This option has an impact on OVEL/UNFL checks on floats.

However, this option allows reducing the number of checks because of the “delta”
approximation.
For example:

« FLT_MAX (with option set) = 3.40282347e+38F

« FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F + A

1

2 void ifr(float f)

3 {

4 doubl e = 1.27;

5 if ((double)l.27F == a) {

6

7 = 1. 0F : |/ Overflow never occurs because f <= FLT MAX
8

/'l reached when -ignore-float-rounding is used

Release 2007a+ 508/546
Revision 4.2 vA



9 }

10 else {

11

12 = 1. 0F ; [/ OVFL could occur when f = (FLT_MAX + A)

13 /'l reached when -ignore-float-rounding is not used
14 }

15 }

Default:
IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry:
pol yspace-c -ignore-float-rounding ...

Release 2007a+ 509/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.4.3.6. -detect-unsigned-overflows

When this option is selected, PolySpace becomes more pedantic than the ANSI C standard
requires, with regards overflowing computations on unsigned integers

Consider the examples below, which apply when the option is in use.

Example 1
unsi gned char x;
x = 255;

x = x+1; //causes an overflow according to this option.

Example 2
unsi gned char y=1;

y & ~y; //causes an overflow because of type promotion

Default:
Without this option in place, Example 1 would generate no error.

unsi gned char x;
x = 255;

x = x+1; //turns x into 0 (wrap around)

Example Shell Script Entry:
pol yspace-c -detect-unsigned-overflows ...

Release 2007a+ 510/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.4.3.7. -known-NTC procl[,proc2[,...]]

After a few analyses, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops by
design, while functions that exit the program such as kill _task , exit or
Terminate _Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC
specified at launch will appear in the viewer in the known-NTC category, and
filtering will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :
pol yspace-c -known-NTC "kill task,exit"
pol yspace-c -known-NTC "Exit, Term nate_Thr ead"

Release 2007a+

511/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.4.4. Others

Related subjects:
10.4.4.1. -extr a-flags option-extr a-flag

10.4.4.2. -c-extra-flags flag

Release 2007a+ 512/546
Revision 4.2 vA



Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.4.4.1. -extra-flags option-extra-flag

This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by PolySpace Support as necessary for your
analyses.

Default:
No extra flags.
Example Shell Script Entry:

pol yspace-c -extra-flags -paranml -extra-flags -parant \
-extra-flags 10 ...

513/546



y Q{ HHOLOGIES
Previous Back to table of contents

10.4.4.2. -c-extra-flags flag

This option is used to specify an expert option to be added to an analysis. Each word of the option
(even the parameters) must be preceded by - c- extra-fl ags.

These flags will be given to you by PolySpace as necessary for your analyses.
Default:

No extra flags.
Example Shell Script Entry:

pol yspace-c -c-extra-flags -paranl -c-extra-flags -paran2 -c-extra-
flags 10

Release 2007a+
Revision 4.2 vA

514/546



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.5. Precision/Scaling

Related subjects:
10.5.1. -quick

10.5.2. -O(0-3)

10.5.3. -modules-precision mod1:O(0-3)[,mod2:0(0-3)],...]]
10.5.4. -from verification-phase

10.5.5. -to verification-phase

10.5.6. -context-sensitivity " procl|,proc?],...]]"
10.5.7. -context-sensitivity-auto

10.5.8. -path-sensitivity-delta number

10.5.9. -retype-pointer

10.5.10. -retype-int-pointer

10.5.11. -k-limiting number

10.5.12. -no-fold

10.5.13. -respect-types-in-globals

10.5.14. -respect-types-in-fields

10.5.15. -inline " procl|,proc?],...]]"

10.5.16. -lightweight-thread-model

Release 2007a+ 515/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.5.1. -quick

This option is used to select a very fast mode for PolySpace C Verifier. This
option cannot be used with the -O(0-3), -from, -to and -modules-precision

options.

Benefits

This option allows results to be generated very quickly. These are suitable for
initial analysis of red and grey errors only, as orange checks are too plentiful
to be relevant using this option.

Quick mode is up to 25 times faster than a typical analysis using a specified
combination of precision level and integration level.

Limitations

-no NTL or NTC are displayed (non termination of loop/call)

- the variable dictionary is not available

- no check is performed on floats

- the call tree is available but navigation is not possible

- orange checks are too plentiful to be relevant

Release 2007a+ 516/546
Revision 4.2 vA



Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Back to table of contents Next

10.5.2. -O(0-3)

This option specifies the precision level to be used. It provides higher
selectivity in exchange for more analysis time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during analysis.

It is recommended that analyses should begin with the -quick option. Red
errors and grey code can then be addressed before re-launching Verifier using
this option, applying a precision level as described below.

Benefits
- A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.
- A higher precision level also means higher analysis time
-O0 corresponds to static interval analysis.
-O1 corresponds to complex polyhedron model of domain values.
-O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex
polyhedrons).
-03 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long analysis time, such as an hour per 1000 lines
of code.

Possible values are 0, 1, 2 and 3
Default:
-02

Example Shell Script Entry:
pol yspace-c -OL -to pass4 ...

517/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.5.3. -modules-precision mod1:O(0-3)[,mod2:0(0-3)[,...]]

This option is used to specify the list of .c files to be analyzed with a different
precision from that specified generally -O(0..3) for this analysis.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default:

All modules are treated with the same precision.

Example Shell Script Entry:
pol yspace-c -0OL \
- nmodul es- preci si on nmyMat h: O2, nyText : O1,

Release 2007a+ 518/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

10.5.4. -from verification-phase

Release 2007a+
Revision 4.2 vA

This option specifies the verification phase to start from. It can only be used
on an existing analysis, possibly to elaborate on the results that you have
already obtained.

For example, if an analysis has been completed -to passl, PolySpace can be
restarted -frompass1 and hence save on analysis time.

The option is usually used in an analysis after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Notes:

- Unless the scratch option is used, this option can be used only if the
previous analysis was launched using the option -keep-all-files.

- This option cannot be used if you modify the source code between analyses.
Default :

scratch

Example Shell Script Entry :
pol yspace-c -fromc-to-il

519/546



PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

10.5.5. -to verification-phase

This option specifies the verification phase after which the Verifier will stop. It provides improved
selectivity, therefore making results review more efficient and hence making bugs in the code easier to
isolate.

A higher integration level contributes to a better selectivity rate. A higher integration level also means
higher analysis time.

Possible values:
e c-compile or "C Source Compliance Checking"
e c-to-il or normalize or "C to Intermediate Language"
e passO or CDFA or "Control and Data Flow Analysis"
* passl or "Software Safety Analysis level 1"
* pass2 or "Software Safety Analysis level 2"
e pass3 or "Software Safety Analysis level 3"
» pass4 or "Software Safety Analysis level 4"
e other
(If you use -to other then PolySpace will continue until you stop it manually (via kill-rte-kernel)
or until it has reached pass20)
Default:
pass4
Example Shell Script Entry:
polyspace-c -to "Software Safety Analysis level 3"...
polyspace-c -to passo ...

Release 2007a+ 520/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.5.6. -context-sensitivity "procl[,proc2|,...]]"

This option allows the precise analysis of a procedure with regards to the
discrete calls to it in the analysed code.
Each check inside the procedure is split into several sub-checks depending on

the context of call.
Therefore if a check is red for one call to the procedure and green for another,

both colours will be revealed.
This option is especially useful is a problem function is called from a

multitude of places.

Release 2007a+ 521/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.5.7. -context-sensitivity-auto

This option is similar to the -context-sensitivity option, except that the system

automatically chooses the procedures to be considered.

Release 2007a+ 522/546
Revision 4.2 vA



Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Back to table of contents Next

10.5.8. -path-sensitivity-delta number

This option is used to improve interprocedural analysis precision within a
particular pass (see -to passl, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer analysis time.

Consider two analyses, one with this option set to 1 (with), and one without
this option (without)

- alevel 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

- alevel 1 analysis in (with) can last x times more than a cumulated level 1
+2 analysis from (without). "x" might be exponential.

- the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)
Gainsusing the option

(+) highest selectivity obtained in level 2. no need to wait until level 4

(-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

(-) This option can only be used with less than 1000 lines of code
Default:

0
Example Shell Script Entry:

polyspace-c -path-sensitivity-delta 1 ...

523/546



PolyS pace

Previous Back to table of contents Next

10.5.9. -retype-pointer

This option can be used to retype variables of pointer types in order to
improve precision of pointer conversions chain.

The principle consists in replacing original type by the aliased object type
when a symbol of pointer type aliases to a single type of objects.

For example, following assert can be proved using -retype-pointer option:
struct A {int a; char b;} s = {1,2};
char *tmp = (char *)&s;
struct A *pa = (struct A*)tmp;
assert((pa->a == 1) && (pa->b ==2));

This principle can be applied to fields of struct/unions of a pointer type.
However, this option set -size-in-bytes option and it does not have expected

precision with -allow-ptr-arith-on-struct.

Moreover, this option is forbidden when using -retype-int-pointer option.
Default:
disable by default

Example Shell ScriptEntry:
pol yspace-c -retype-pointer

Release 2007a+ 524/546
Revision 4.2 vA



PonSpace

Previous

Back to table of contents

TECHNOLOGIES

10.5.10. -retype-int-pointer

This option can be used to retype variables of pointer to signed or unsigned integer types in order to

improve precision of pointer conversions chain.

The principle consists in replacing original type by the aliased object type when a symbol of pointer
type aliases to a single type of objects. It applies only on symbols of signed or unsigned integer types.
For example, following assert can be proved using - r et ype-i nt - poi nt er option:

voi d function(voi d)
{
struct Sl {
int X;
int vy;
int z;
char t;
} s1 =1{1,2,3,4};

struct S2 {

int first;

voi d *p;
} s2;
I nt addr;
addr = (int)(&sl);
assert(((struct S1 *)addr)->y
s2.first = (int)(&sl);

assert(((struct S1 *)s2.first)->y

}

2); Il ASRT is verified

[/ ASRT is verified

2);

However, this option set -size-in-bytes and has no effect when set -respect-types-in-globals on global
symbols of integer types and when set -respect-types-in-fields on fields of struct/union of integer types.

Some sides effects can be noticed on PolySpace checks concerning initialisation on variables which
can be stated as initialisation on pointer check (NIP).
Moreover, this option implies -retype-pointer option.

Default:
Disable by default

Example Shell ScriptEntry:
pol yspace-c -retype-int-pointer...

Release 2007a+
Revision 4.2 vA

525/546



y Q{ HHOLOGIES
Previous Back to table of contents

10.5.11. -k-limiting number

This is a scaling option to limits the depth of analysis into nested structures during pointer analysis.

This option is only available for PolySpace C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

pol yspace-c -k-limting 1 ...

In this example above, analysis will be precise to only one level of nesting.

Release 2007a+
Revision 4.2 vA

1526/546



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.5.12. -no-fold

When variables are defined with huge static initialization, scaling problems may occur during the

compilation phase. This option approximates the initialization of array types of integer, floating point,
and char types (included string) if needed.

It can speed up the analysis, but may decrease precision for some applications
Default:

Option not set.
Example Shell Script Entry:

pol yspace-c -no-fold ...

Release 2007a+ 527/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.5.13. -respect-types-in-globals

This is a scaling option, designed to help process complex code. When it is applied, PolySpace
assumes that global variables not declared as containing pointers are never used for holding pointer
values. This option should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using option —r espect -t ypes-i n- gl obal s option:
int Xx;

void tl(void) {

Int vy;

int *tnmp = &x;

*tmp = (int)&y;

y=0;

*(int*)x = 1; /1 x contains address of y

assert (y == 0); [// green with the option
}
PolySpace will not take care that x contains the address of y resulting a green assert.
Default:
PolySpace assumes that global variables may contain pointer values.

Example Shell Script Entry:
pol yspace-c -respect-types-in-globals ...

Release 2007a+ 528/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.5.14. -respect-types-in-fields

This is a scaling option, designed to help process complex code. When it is applied, PolySpace
assumes that structure fields not declared as containing pointers are never used for holding pointer
values. This option should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-globals .

In the following example, we will lose precision using option —r espect -t ypes-i n-fi el ds option:
struct {

unsi gned x;

int f1;

int *z[2];
} SL;

void funct2(void) {
i nt *tnp;
Int vy;
((int**)&S1)[0] = &; /* Sl.x points ony */
tmp = (int*)S1. x;
y=0;
*tnmp = 1, /[* wite 1 intoy */
assert (y==0);
}
PolySpace will not take care that S1. x contains the address of y resulting a green assert.
Default:
PolySpace assumes that structure fields may contain pointer values.

Example Shell Script Entry:
pol yspace-c -respect-types-in-fields ...

Release 2007a+ 529/546
Revision 4.2 vA



Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Back to table of contents Next

10.5.15. -inline "procl[,proc?2|[,...]]"

A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention viz:

procedurel pst cloned nb,

where nb is a unique number giving the total number of cloned procedures.
Such an inlining allows the number of aliases in a given procedure to be
reduced, and may also improve precision.

Restrictions:

- Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

- This option should be used in response to the inlining hints provided by the
alias analysis

- This option should not be used on main, task entry points and critical section
entry points

530/546



y Q{ HHOLOGIES
Previous Back to table of contents Next

10.5.16. -lightweight-thr ead-model

This scaling option can be used to reduce task complexity (see also -entry-points ).
It uses a slightly less precise model of pointer/thread interaction compared to that used by
default, and is likely to prove helpful when there are a lot of pointers in an application. See
PolySpace Methodological guide section for more explanation of when to use it.
It causes a loss of precision:
- It causes a slight loss of precision when shared variables are reads via pointers.
- Some read/write accesses may not appear in the Global Variable Dictionary.

Default:
disabled by default.

Example Shell Script Entry :
pol yspace-c -1ightwei ght-thread- nodel
pol yspace-c -Iwm. ..

Release 2007a+ 531/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.6. Multitasking (For PolySpace Server only)

Concurrency options are not compatible with -main-generator options.

Related subjects:
10.6.1. -entry-points stri],str2[,...]]

10.6.2. Critical sections
10.6.3. -tempor al-exclusions-file file name

Release 2007a+ 532/546
Revision 4.2 vA



PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

10.6.1. -entry-points strl[,str2][,...]]

This option is used to specify the tasks/entry points to be analysed by
Verifier, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Using PolySpace ¢ tasks must have the prototype "void task_name(void);".
Example Shell Script Entry:

pol yspace-c -entry-points procl, proc2, proc3 ...

Release 2007a+ 533/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.6.2. Critical sections
-critical -section-begin "procl:csl[, proc2:cs2]"

and
-critical -section-end "proc3:csl[, proc4:cs2]"

These options specify the procedures beginning and ending critical sections, respectively. Each uses a
list enclosed within double speech marks, with list entries separated by commas, and no spaces.
Entries in the lists take the form of the procedure name followed by the name of the critical section, with
a colon separating them.
These critical sections can be used to model protection of shared resources, or to model interruption
enabling and disabling.
Default:

no critical sections.
Example Shell Script Entry:
pol yspace-c -critical-section-begin "start_ny_semaphore:cs" \
-critical -section-end "end _ny_semaphore: cs”

Release 2007a+ 534/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.6.3. -tempor al-exclusions-file file_name

This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

* one line for each group of temporally excluded tasks,

* on each line, tasks are separated by spaces.

Default :

No temporal exclusions.

Example Task Specification file

File named 'exclusions' (say) in the 'sources' directory and containing:
taskl groupl task2_groupl

taskl group2 task2 group2 task3 group2
Example Shell Script Entry :

pol yspace-c -tenporal -exclusions-file sources/exclusions \
-entry-points taskl groupl,task2 groupl,taskl group2,\
task2 group2, task3 _group2 ...

Release 2007a+ 535/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.7. Batch mode options

Related subjects:
10.7.1. -server server name or _ip[:port number]

10.7.2. -sour ces-list-file file name
10.7.3. -v | -version
10.7.4. -h[elp]

Release 2007a+ 536/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.7.1. -server server_name or_ip[:port_number]

Using pol yspace-renot e[ -desktop] -[c] [-server [name or |P address]|[:<port
nunber >] ] allows to send analysis to a specific or referenced PolySpace Queue manager server.
Note that If the option —ser ver is not specified, the default server referenced in the Pol ySpace-
Launcher . prf configuration file will be used as server.

When a —ser ver option is associated to the batch launching command, the name or IP address and a
port number need to be specified. If the port number does not exist, the 12427 value will be used by
default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:
pol yspace-renot e- deskt op-c —server 192.168. 1. 124: 12400 ...

pol yspace-renote-c ...
pol yspace-renote-c —server Bergeron ...

Release 2007a+ 537/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents

10.7.2. -sour ces-list-file file_name

This option is only available in batch mode. The syntax of file_name is the following:

- One file per line.
- Each file name includes its absolute or relative path.

Example Shell Script Entry for -sour ces-list-file:
pol yspace-c -sources-list-file "C\Analysis\files.txt"
pol yspace-c -sources-list-file "files.txt"

Release 2007a+
Revision 4.2 vA

538/546



y Qﬁ HHOLOGIES
Previous Back to table of contents Next

10.7.3. -v | -version

This option displays the PolySpace version number.

Example Shell Script Entry:

pol yspace-c -v

Which will show a result similar to:

Pol ySpace r2007a+

Copyright (c) 1999-2007 Pol ySpace Technol ogi es

Release 2007a+ 539/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.7.4. -h[elp]

Display in the shell window a simple help in a textual format giving information on all options.

Example Shell Script Entry:
pol yspace-c -h

Release 2007a+ 540/546
Revision 4.2 vA



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

10.8. Complete examples

Simple C example
pol yspace-c \
-prog nyCproject \
-0L\
-1 /hone/ user/includes \
-D SUNd -D USE_FI LES \

Apache:
Here is a script for verifying the code for Apache (after proper formatting). The source code is
in C and the compilation is for a Sun.
Note the use of OO0 to reduce analysis time.
pol yspace-c \ \
-target sparc \
- prog Apache \
-keep-all-files \
-al | ow undef -vari abl es \
-continue-with-red-error \
-0\
-D PST \
-D __GNUC_ M NOR_=6 -D SOLARI S2=270 - D USE_EXPAT \
-D NO_DL_NEEDED \
-1 sources \
-1 /Jusr/local/pst/include.sparc \
-1 Jusr/include \
-resul ts-dir RESULTS

cxref:
Here is another C launch command. The compilation is for Linux. Note the escape characters,

allowing quoted strings to be used as compiler defines.
pol yspace-c \
-OS-target linux \
-prog cxref \

-00 \
-1 Tpwdt N
-l sources \

-1 <<Pol ySpace Verifer_Installation_Path>>/include/include.!linux \
-D CXREF_CPP="\"/usr/ Il ocal /gcc/bin/cpp\"" \

-D PAGE="\"A4\"" \

-resul ts-dir RESULTS

Release 2007a+ 541/546
Revision 4.2 vA



T31:

Another simple C launcher. There are a couple of tasks and compilation is for an m68k

pol yspace-c \

-target nb68k \

-entry-points task call back _main,task _tcp_main, cdtask_depm main,
task _receiver \

-to passl \

-prog T31 \

-0\

-results-dir “~pwd /RESULTS 31 \

-keep-all-files

dishwasher 1:

Another C example. This one is for the c-167 and has tasks protected by critical section.

pol yspace-c \

-target c-167 \

-entry-points periodic,pst_main\

-D PST -D const= -D water=\

-from scratch \

-to pass4 \

-critical-section-begin "critical _enter:csl" \
-critical-section-end "critical _exit:cs1" \
-prog di shwasher1 \

-1 " pwd /sources \

-Q0 \

-keep-all-files \

-resul ts-dir RESULTS

satellite:

A C example with tasks and critical sections.
pol yspace-c
-target c-167 \
-entry-poi nts ctaskO, ctaskl, ctask2, ctask3,interrupts \
-2\
-keep-all-files \
-from scratch \
-critical-section-begin "Di sablelnterrupts:scl" \
-critical -section-end "Enablelnterrupts:scl” \
-ignore-constant-overflows \
-include “pwd /sources/options.h \
-to pass4 \
-prog satellite \
-1 " pwd’ /sources \
-resul ts-dir RESULTS

Release 2007a+
Revision 4.2 vA

542/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

11. Appendix

Related subjects:
11.1. Glossary

11.2. What is static verification?

Release 2007a+ 543/546
Revision 4.2 vA



Previous

PonSpace

TECHNOLOGIES
Back to table of contents Next

11.1. Glossary

Analysis In order to use a PolySpace tool, the code is prepared and an analysis is launched which is turn produces results for
review.

Atomic In computer programming, atomic describes a unitary action or object that is essentially indivisible, unchangeable,
whole, and irreducible.

Atomicity In a transaction involving two or more discrete pieces of information, either all of the pieces are committed or none
are.

Batch mode Execution of PolySpace Verifier from the command line, rather than via the launcher GUI.

Category One of four types of orange check: potential bug, inconclusive check, data set issue and basic imprecision

Certain error See red error

Check Test performed by PolySpace during analysis, coloured red, orange, green or grey in the viewer

Dead code Code which is inaccessible at execution time under all circumstances, due to the logic of the software executed

before it.

Development Process

Development process used within a company to progress through the software development lifecycle.

Green check

Check found to be confirmed as error free

Grey code Dead code

Imprecision Approximations made during PolySpace analysis, so that data values possible at execution time are represented by
supersets including those values

mcpu Micro Controller/Processor Unit

Orange warning

Check found to represent a possible error, which may be revealed on further investigation.

PolySpace Approach

The manner of use of PolySpace to achieve a particular goal, with reference to a collection of techniques and guiding
principles.

Precision

An analysis which includes few inconclusive orange checks is said to be precise

Progress text

Output from PolySpace during analysis to indicate what proportion of the analysis has been completed. Could be
considered as a “textual progress bar”.

Red error

Check found to represent a definite error

Review

Inspection of the results produced by a PolySpace analysis, using the Viewer.

Release 2007a+
Revision 4.2 vA

544/546




Scaling option

Option applied when an application submitted to PolySpace Verifier proves to be bigger or more complex than is
practical.

Selectivity

The ratio of (green + + red) / (total amount of checks)

Unreached code

Dead code

Release 2007a+
Revision 4.2 vA

545/546



PonSpace

TECHNOLOGIES

Previous Back to table of contents

11.2. What is static verification?

Static Verification isabroad term, and is applicable to any tool which derives dynamic properties of a program
without actually executing it. Static Verification differs significantly from other techniques, such as run-time
debugging, in that the analysisit providesis not based on a given test case or set of test cases. The dynamic
properties obtained in the PolySpace analysis are true for all executions of the software.

Most Static Verification tools only provide an analysis of the complexity of the software, in a search for
constructs which may be potentially dangerous.

PolySpace provides deep-level analysisidentifying almost all run-time errors and possible access conflicts on
global shared data.

The ideaisto use an approximation of the software under analysis, using safe and representative approximations
of software operations and data.

An exampleis given below:

for (i=0; 1<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable 'i' never overflows the range of 'tab’ atraditional approach would be to enumerate each
possible value of 'i'. One thousand checks would be needed.

Using the static verification approach, the variable 'i* is modelled by its variation domain. For instance the model
of 'i"isthat it belongs to the [0..999] static interval. (Depending on the complexity of the data, convex
polyhedrons, integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance, the information that 'i' is incremented by
one every cycleintheloop islost. However the important fact is that thisinformation is not required to ensure
that no range error will occur; it is only necessary to prove that the variation domain of 'i' is smaller than the range
of 'tab'’. Only one check is required to establish that — and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical, asit would in general require the
enumeration of all possible test cases. As aresult, approximation isrequired if a usable tool isto result.

Exhaustiveness

Nothing islost in terms of exhaustiveness. The reason is that PolySpace works by performing upper
approximations. In other words, the computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no run time error (RTE) item to be checked can be
missed by PolySpace.

Release 2007a+ 546/546
Revision 4.2 vA



	Local Disk
	PolySpace for C Documentation
	Table of contents
	1. PolySpace documentation set
	2. Getting started
	2.1. General Requirements
	2.1.1. Configuration
	2.1.2. Installation Guide
	2.1.3. Structure of this document

	2.2. Step 1: PolySpace Client - Setting up and launching an analysis of a single C file
	2.2.1. Analysis prerequisites
	2.2.2. Setting up a PolySpace Client analysis
	2.2.3. PolySpace Client: running the analysis
	2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
	2.2.3.2. Progression of the analysis
	2.2.3.3. End of the analysis


	2.3. Step 2: PolySpace Viewer - Exploration of results
	2.3.1. Modes of operation
	2.3.2. Downlaod results into the Viewer
	2.3.3. Analysing of PolySpace results (“example.c”)
	2.3.3.1. Procedural entities view (RTE View)
	2.3.3.2. Colours in the Source code view
	2.3.3.3. More examples of run-time errors
	2.3.3.4. Advanced results exploration
	2.3.3.5. Miscellaneous

	2.3.4. Methodological asssitant
	2.3.4.1. Assistant dashboard
	2.3.4.2. Choose a methodological assistant

	2.3.5. Report Generation

	2.4. Step 3: Setting up and launching the MISRA-C checker
	2.4.1. Prerequisites
	2.4.2. Selecting MISRA-C rules to check
	2.4.2.1. File configuration 
	2.4.2.2. Discard header files from MISRA Checking

	2.4.3. Running the MISRA checker

	2.5. Launch PolySpace Remotely
	2.5.1. Steps of Launching
	2.5.2. Management of PolySpace analysis in remote: the PolySpace Spooler
	2.5.3. Batch commands
	2.5.4. Share analyses between accounts

	2.6. Summary

	3. Analysis setup
	3.1. Compile errors
	3.1.1. Messages
	3.1.1.1. Syntax error
	3.1.1.2. Undeclared identifier
	3.1.1.3. No such file or directory
	3.1.1.4. Compilation errors with key words: @interrupt, @address(0xABCDEF)

	3.1.2. Compiling Operating System dependant code (OS-target issues)
	3.1.2.1. List of already predefined compilation flags
	3.1.2.2. My target application runs on a Linux OS
	3.1.2.3. My target application runs on Solaris
	3.1.2.4. My target application runs on Vxworks
	3.1.2.5. My target application runs neither on Linux, vxworks nor Solaris

	3.1.3. Target specific issues
	3.1.3.1. Target specification (size of char, int, float, double...)
	3.1.3.2. Generic/custom target
	3.1.3.3. Address alignment
	3.1.3.4. ”KEIL” and “IAR”  dialects
	3.1.3.5. Keywords to automatically ignore or replace, before compilation

	3.1.4. Assembly Code
	3.1.4.1. All statements are ignored: the rest of the function remains unchanged
	3.1.4.2. Following example is automatically stubbed
	3.1.4.3. All following examples have an empty body
	3.1.4.4. #asm and  #endasm support
	3.1.4.5. What to do if –discard-asm failes parsing an asm code section

	3.1.5. Dealing with backward "goto" statements

	3.2. Link messages
	3.2.1. Function: wrong argument type
	3.2.2. Function: wrong argument number
	3.2.3. Variable: wrong type
	3.2.4. Variable: signed/unsigned
	3.2.5. Variable: different qualifier
	3.2.6. Variable: array against variable
	3.2.7. Variable: wrong array size
	3.2.8. Missing required prototype for varargs
	3.2.9. Can an application without “main” be analysed? (For non Client mode only)

	3.3. Stubbing errors
	3.3.1. Errors when compiling __polyspace__stdstubs.c
	3.3.1.1. Standard error messages
	3.3.1.2. Troubleshooting

	3.3.2. Errors when creating automatic stubs
	3.3.3. How to gather compilations options efficiently
	3.3.4. Stubbing
	3.3.4.1. Manual vs. Automatic Stubbing
	3.3.4.2. The stubbing options PURE and WORST 
	3.3.4.3. The default and alternative behaviour for stubbing
	3.3.4.4. Function pointer cases
	3.3.4.5. Stubbing functions with a variable argument number
	3.3.4.6. Finding bugs in __polyspace__stdstubs.c


	3.4. Intermediate language errors
	3.5. Advanced setup
	3.5.1. Variables – Declaration and definition
	3.5.2. Types promotion
	3.5.2.1. An example of an unsigned promoted to signed
	3.5.2.2. What are the promotions rules in operators?
	3.5.2.3. Example

	3.5.3. Code preparation
	3.5.3.1. Variables
	3.5.3.1.1. How can I assign ranges to variables/assert?
	3.5.3.1.2. Checking properties on global variables at any point: Global assert
	3.5.3.1.3. How can I model variable values external to my application?
	3.5.3.1.4. How are variables initialised?

	3.5.3.2. Built-in functions

	3.5.4. My code is multitasking
	3.5.4.1. Modelling tasks,interruptions and events
	3.5.4.1.1. Modelling synchronous tasks
	3.5.4.1.2. Interruptions and asynchronous events/tasks/threads
	3.5.4.1.3. Are interruptions maskable or preemptive by default?

	3.5.4.2. Shared variables
	3.5.4.2.1. Differences between dictionary and concurrent access graph
	3.5.4.2.2. Critical sections
	3.5.4.2.3. Mutual exclusion
	3.5.4.2.4. Access pattern
	3.5.4.2.5. Semaphores

	3.5.4.3. Miscellaneous
	3.5.4.3.1. Mailboxes
	3.5.4.3.2. Atomicity (Can an instruction be interrupted by another?)
	3.5.4.3.3. Priorities




	4. PolySpace day to day usage
	4.1. PolySpace In One Click Usage
	4.2. PolySpace in a Right Click

	5. MISRA Checker
	5.1. Rules supported
	5.1.1. Language extensions
	5.1.2. Character sets
	5.1.3. Identifiers
	5.1.4. Types
	5.1.5. Constants
	5.1.6. Declarations and definitions
	5.1.7. Initialisation
	5.1.8. Arithmetic type conversion
	5.1.9. Pointer type conversion
	5.1.10. Expressions
	5.1.11. Control statement expressions
	5.1.12. Control flow
	5.1.13. Switch statements
	5.1.14. Functions
	5.1.15. Pointers and arrays
	5.1.16. Structures and unions
	5.1.17. Preprocessing directives
	5.1.18. Standard libraries
	5.1.19. Run-time failures

	5.2. Rules partially supported
	5.3. Rules not checked

	6. Data Range Specifications
	6.1. File format
	6.2. Variable scope
	6.3. Reduce oranges with DRS
	6.3.1. Perform efficient module testing
	6.3.2. Reduce oranges with the -data-range-specification option


	7. PolySpace Model Link
	7.1. Getting started
	7.1.1. Create a Simulink model and generate production code
	7.1.2. Start the PolySpace analysis
	7.1.3. Fix an error in the design and the Simulink model
	7.1.4. Base workspace vs. PolySpace data ranges
	7.1.4.1. Update range of signals
	7.1.4.2. Re-Generate code and launch again the PolySpace analysis


	7.2. Advance setup
	7.2.1. Hand written code
	7.2.2. Target production environnement
	7.2.3. Template of PolySpace configuration file
	7.2.4. Using the PolySpace boxes available in the Simulink library

	7.3. PolySpace Utilities
	7.3.1. Open PolySpace Results
	7.3.2. PolySpace Menu
	7.3.3. PolySpace Configuration
	7.3.4. Archives files produced for the PolySpace analysis
	7.3.5. PolySpace commands available in batch mode as m-functions

	7.4. Code Generator Specific Information
	7.4.1. PolySpace Model Link for TL
	7.4.2. PolySpace Model Link for SL


	8. Results review
	8.1. Basics: prerequisite being able to review PolySpace results
	8.1.1. Grey follows red
	8.1.2. What is the message and what does it mean?
	8.1.3. What is the C explanation?
	8.1.4. Specific check analysis
	8.1.4.1. PolySpace memorizes the relationships between variables
	8.1.4.2. The purpose of the -continue-with-red-error option.
	8.1.4.3. Default settings, –continue-with-red-error and side effects
	8.1.4.4. Why there might be 2 distinct colours in a while/for statement. 


	8.2. Coloured source code for C
	8.2.1. Illegal pointer access to variable or structure field: IDP
	8.2.2. Array conversion must not extend range: COR
	8.2.3. Array index within bounds: OBAI
	8.2.4. Initialized Return Value: IRV
	8.2.5. Non-Initialized Variable: NIV/NIVL
	8.2.6. Non-Initialized Pointer: NIP
	8.2.7. Power arithmetic: POW
	8.2.8. User Assertion: ASRT
	8.2.9. Scalar and Float Underflows: UNFL
	8.2.10. Scalar and Float Overflows: OVFL
	8.2.11. Float underflows and overflows : UOVFL
	8.2.11.1. How much is the biggest float in C?
	8.2.11.2. What is the type of constants/What is a constant overflow?
	8.2.11.3. Float underflow versus values near zero: UNFL

	8.2.12. Scalar or Float Division by zero: ZDV
	8.2.13. Shift amount in 0..31 (0..63): SHF
	8.2.14. Left operand of left shift is negative: SHF
	8.2.15. Function pointer must point to a valid function: COR
	8.2.16. Wrong type for argument: COR
	8.2.17. Wrong number of arguments: COR
	8.2.18. Wrong return type of a function pointer: COR
	8.2.19. Wrong return type for arithmetic functions: COR
	8.2.20. Pointer within bounds: IDP
	8.2.20.1. Understanding addressing 
	8.2.20.1.1. I systematically have an orange out of bounds access on my hardware register
	8.2.20.1.2. The NULL pointer case
	8.2.20.1.3. Comparing address

	8.2.20.2. Understanding pointers 
	8.2.20.2.1. Address alignment: the bitfield example
	8.2.20.2.2. How does malloc work for PolySpace?
	8.2.20.2.3. Structure Handling 
	8.2.20.2.3.1. Data mapping into a structure
	8.2.20.2.3.2. Mapping of a small structure into a bigger one
	8.2.20.2.3.3. Partially allocated pointer (-size-in-bytes)
	8.2.20.2.3.4. Pointer to a structure field
	8.2.20.2.3.5. I have a red when reading a field of one structure 



	8.2.21. Non Termination of Call or Loop
	8.2.21.1. Non Termination of Call: NTC
	8.2.21.2. Known Non Termination of Call: k-NTC
	8.2.21.3. Non Termination of Loop: NTL
	8.2.21.4. Arithmetic expressions: NTC

	8.2.22. Unreachable Code: UNR
	8.2.23. Value On Assignment: VOA
	8.2.24. Inspection Points: IPT


	9. PolySpace Methodological guide
	9.1. PolySpace usage
	9.1.1. Standard development process
	9.1.2. Rigorous development process: introducing tools and coding rules
	9.1.3. A quality/qualification approach
	9.1.4. Code acceptance criterion

	9.2. PolySpace activities
	9.2.1. Review run time errors: Fix red errors
	9.2.2. Review dead code checks: why is grey code interesting?
	9.2.2.1. Functional bugs can be found in grey code
	9.2.2.2. Structural coverage

	9.2.3. How to find a maximum number of bugs within an hour reviewing oranges: selective orange review
	9.2.3.1. How?
	9.2.3.2. Why?
	9.2.3.3. In practice…
	9.2.3.4. Step by step
	9.2.3.5. Which category of checks should I choose first?
	9.2.3.6. Exhaustive orange review at unit phase
	9.2.3.6.1. Without coding rules
	9.2.3.6.2. With coding rules


	9.2.4. Cost and benefits of an exhaustive orange review at integration phase
	9.2.4.1. Benefits
	9.2.4.2. Costs
	9.2.4.3. Method
	9.2.4.3.1. Inconclusive
	9.2.4.3.2. Basic imprecision
	9.2.4.3.3. Real bugs and data sets


	9.2.5. Integration bug tracking
	9.2.6. How to find bugs in unprotected shared data
	9.2.7. Dataflow analysis
	9.2.8. Data and coding rules

	9.3. How to get the best results
	9.3.1. Reduce oranges step by step
	9.3.2. Generic objectives: a balance between precision and analysis time
	9.3.3. Options at launching time 
	9.3.3.1. Vary the precision level
	9.3.3.2. Apply Software safety level wisely
	9.3.3.3. Add precision constraints at the application periphery via stubs
	9.3.3.3.1. Reduce the cloud of points
	9.3.3.3.2. Increase the number of red and green checks

	9.3.3.4. Describe multitasking behaviour properly
	9.3.3.5. Tune the advanced parameters

	9.3.4. How to conclude an orange review
	9.3.4.1. What is an orange?
	9.3.4.2. What are the different sources of oranges?
	9.3.4.3. How to determine the cause of one orange?

	9.3.5. Duration of Analysis
	9.3.5.1. How far has the analysis gone? How can I predict the analysis duration
	9.3.5.2. Reducing analysis time 
	9.3.5.2.1. An ideal application size 
	9.3.5.2.2. Why should there be an optimum size?
	9.3.5.2.3. Switch the anti-virus off
	9.3.5.2.4. Tuning PolySpace parameters 
	9.3.5.2.5. By selecting a subset of code
	9.3.5.2.5.1. Subdivision in accordance with dataflow
	9.3.5.2.5.2. Subdivide according to real-time characteristics
	9.3.5.2.5.3. Subdivide according to files

	9.3.5.2.6. A decision algorithm to speed up an analysis: Hints and trouble-shooting
	9.3.5.2.7. What are the benefits of these methods?
	9.3.5.2.7.1. When the application is incomplete
	9.3.5.2.7.2. Considering the effects of application code size




	9.4. Applying coding rules to reduce oranges
	9.4.1. MISRA rules which PolySpace can help to follow
	9.4.2. Recommended set of coding rules
	9.4.2.1. Set of coding rules having a direct impact on the selectivity
	9.4.2.2. Set of coding rules having an indirect impact on the selectivity

	9.4.3. Approximations made by PolySpace
	9.4.3.1. Volatile variables
	9.4.3.2. Structures with volatile fields
	9.4.3.3. Absolute addresses
	9.4.3.4. Pointer comparison
	9.4.3.5. Left shift on negative variables
	9.4.3.6. Some bitwise operators
	9.4.3.7. Float loops
	9.4.3.8. Shared variables
	9.4.3.9. Array of function pointers
	9.4.3.10. Trigonometric functions
	9.4.3.11. Unions
	9.4.3.12. Loop exit conditions
	9.4.3.13. Constant pointer



	10. Options description 
	10.1. General
	10.1.1. -prog Session identifier 
	10.1.2. -date Date 
	10.1.3. -author Author 
	10.1.4. -verif-version Version 
	10.1.5. -voa
	10.1.6. -keep-all-files
	10.1.7. -continue-with-red-error
	10.1.8. -continue-with-existing-host 
	10.1.9. -allow-unsupported-linux
	10.1.10. -results-dir Results Directory 
	10.1.11. -sources "files" or -sources-list-file file_name
	10.1.12. -I directory 

	10.2. Target/Compiler
	10.2.1. -target TargetProcessorType 
	10.2.2. GENERIC ADVANCED TARGET OPTIONS 
	10.2.2.1. -default-sign-of-char [signed|unsigned]
	10.2.2.2. -char-is-16bits
	10.2.2.3. -short-is-8bits
	10.2.2.4. -int-is-32bits 
	10.2.2.5. -long-long-is-64bits 
	10.2.2.6. -double-is-64bits 
	10.2.2.7. -pointer-is-32bits 
	10.2.2.8. -align [8|16|32]
	10.2.2.9. -logical-signed-right-shift

	10.2.3. -OS-target OperatingSystemTargetForPolySpaceStubs 
	10.2.4. -D compiler-flag
	10.2.5. -U compiler-flag 
	10.2.6. -include file_name 
	10.2.7. -post-preprocessing-command <file_name> or "command" 
	10.2.8. -post-analysis-command <file_name> or "command"

	10.3. Compliance with standards
	10.3.1. -dos
	10.3.2. Embedded Assembler
	10.3.2.1. -discard-asm 
	10.3.2.2. Pragmas asm

	10.3.3. Strictness during analysis launching
	10.3.3.1. -strict 
	10.3.3.2. -Wall

	10.3.4. Permissiveness during analysis launching
	10.3.4.1. -permissive 
	10.3.4.2. -permissive-link 
	10.3.4.3. -allow-non-int-bitfield
	10.3.4.4. -allow-undef-variables
	10.3.4.5. -ignore-constant-overflows 
	10.3.4.6. -allow-unnamed-fields
	10.3.4.7. -allow-negative-operand-in-shift 

	10.3.5. MISRA-C 2004 Rules
	10.3.5.1. -misra2 [all-rules | file_name]
	10.3.5.2. -includes-to-ignore "dir_or_file_path1[,dir_or_file_path2[,...]]"

	10.3.6. -dialect [iar|keil]

	10.4. PolySpace inner settings
	10.4.1. MAIN GENERATOR OPTIONS (-main-generator) for PolySpace
	10.4.1.1. PolySpace Client default behaviour
	10.4.1.2. PolySpace Server default behaviour
	10.4.1.3. -main-generator (detailed options)
	10.4.1.4. -main-generator-writes-variables [ none | public | all | custom=v1,v2,.] 
	10.4.1.5. -function-called-before-main function_name
	10.4.1.6. -main-generator-calls [ none | unused | all | custom=f1,f2,...]

	10.4.2. Stubbing
	10.4.2.1. -data-range-specifications file_name
	10.4.2.2. -permissive-stubber 
	10.4.2.3. -no-automatic-stubbing 

	10.4.3. Assumptions
	10.4.3.1. -div-round-down 
	10.4.3.2. -no-def-init-glob 
	10.4.3.3. -size-in-bytes 
	10.4.3.4. -allow-ptr-arith-on-struct 
	10.4.3.5. -ignore-float-rounding
	10.4.3.6. -detect-unsigned-overflows 
	10.4.3.7. -known-NTC proc1[,proc2[,...]]

	10.4.4. Others
	10.4.4.1. -extra-flags option-extra-flag
	10.4.4.2. -c-extra-flags flag


	10.5. Precision/Scaling
	10.5.1. -quick 
	10.5.2. -O(0-3) 
	10.5.3. -modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]] 
	10.5.4. -from verification-phase 
	10.5.5. -to verification-phase 
	10.5.6. -context-sensitivity "proc1[,proc2[,...]]"
	10.5.7. -context-sensitivity-auto
	10.5.8. -path-sensitivity-delta number 
	10.5.9. -retype-pointer 
	10.5.10. -retype-int-pointer 
	10.5.11. -k-limiting number 
	10.5.12. -no-fold 
	10.5.13. -respect-types-in-globals
	10.5.14. -respect-types-in-fields
	10.5.15. -inline "proc1[,proc2[,...]]" 
	10.5.16. -lightweight-thread-model

	10.6. Multitasking (For PolySpace Server only)
	10.6.1. -entry-points str1[,str2[,...]] 
	10.6.2. Critical sections
	10.6.3. -temporal-exclusions-file file_name 

	10.7. Batch mode options
	10.7.1. -server server_name_or_ip[:port_number]
	10.7.2. -sources-list-file file_name
	10.7.3. -v | -version
	10.7.4. -h[elp] 

	10.8. Complete examples

	11. Appendix
	11.1. Glossary
	11.2. What is static verification?



